×

Amplitude equation with quintic nonlinearities for the generalized Swift-Hohenberg equation with additive degenerate noise. (English) Zbl 1346.60097

Summary: In this paper, we are interested in the approximation of a stochastic generalized Swift-Hohenberg equation with quadratic and cubic nonlinearity by using the natural separation of time-scales near a change of stability. The main results show that the behavior of the SPDE is well approximated by a stochastic ordinary differential equation describing the amplitude of the dominant mode. The cubic and the quadratic nonlinearities lead to cubic nonlinearities of opposite sign. Here we study the interesting case where both contributions cancel and in the right scaling a quintic nonlinearity emerges in the amplitude equation. Also, we give a brief indication of how the effect of additive degenerate noise (i.e. noise that does not act directly to the dominant mode) might lead to the stabilization of the trivial solution.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Swift, JB, Hohenberg, PC: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319-328 (1977) · doi:10.1103/PhysRevA.15.319
[2] Cross, MC, Hohenberg, PC: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851-1112 (1993) · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[3] Haken, H: Advanced Synergetics. Springer, Berlin (1983) · Zbl 0521.93002
[4] Mohammed, WW: Stochastic amplitude equation for the stochastic generalized Swift-Hohenberg equation. J. Egypt. Math. Soc. 23, 482-489 (2015) · Zbl 1329.60217 · doi:10.1016/j.joems.2014.10.005
[5] Klepel, K, Blömker, D, Mohammed, WW: Amplitude equation for the generalized Swift-Hohenberg equation with noise. Z. Angew. Math. Phys. 65, 1107-1126 (2014) · Zbl 1322.60117 · doi:10.1007/s00033-013-0371-8
[6] Mohammed, WW, Blömker, D, Klepel, K: Multi-scale analysis of SPDEs with degenerate additive noise. J. Evol. Equ. 14, 273-298 (2014) · Zbl 1294.60089 · doi:10.1007/s00028-013-0213-3
[7] Blömker, D, Hairer, M, Pavliotis, GA: Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities. Nonlinearity 20, 1-25 (2007) · Zbl 1138.60004 · doi:10.1088/0951-7715/20/7/009
[8] Blömker, D, Mohammed, WW: Amplitude equations for SPDEs with cubic nonlinearities. Stoch. Int. J. Probab. Stoch. Process. 85, 181-215 (2013) · Zbl 1291.60127 · doi:10.1080/17442508.2011.624628
[9] Hutt, A, Longtin, A, Schimansky-Geier, L: Additive global noise delays Turing bifurcations. Phys. Rev. Lett. 98, 230601 (2007) · doi:10.1103/PhysRevLett.98.230601
[10] Hutt, A, Longtin, A, Schimansky-Geier, L: Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation. Physica D 237, 755-773 (2008) · Zbl 1152.92003 · doi:10.1016/j.physd.2007.10.013
[11] Hutt, A: Additive noise may change the stability of nonlinear systems. Europhys. Lett. 84, 34003 (2008) · doi:10.1209/0295-5075/84/34003
[12] Roberts, AJ: A step towards holistic discretization of stochastic partial differential equations. ANZIAM J. 45(E), C1-C15 (2003) · Zbl 1063.65511
[13] Roberts, AJ, Wang, W: Macroscopic reduction for stochastic reaction-diffusion equations. IMA J. Appl. Math. 78, 1237-1264 (2013) · Zbl 1284.60131 · doi:10.1093/imamat/hxs019
[14] Pradas, M, Pavliotis, GA, Kalliadasis, S, Papageorgiou, DT, Tseluiko, D: Additive noise effects in active nonlinear spatially extended systems. Eur. J. Appl. Math. 23, 563-591 (2012) · Zbl 1279.60081 · doi:10.1017/S0956792512000125
[15] Schmuck, M, Pradas, M, Kalliadasis, S, Pavliotis, GA: New stochastic mode reduction strategy for dissipative systems. Phys. Rev. Lett. 110, 244101 (2013) · Zbl 1302.76184 · doi:10.1103/PhysRevLett.110.244101
[16] Courant, R, Hilbert, D: Methoden der mathematischen Physik (Methods of Mathematical Physics), 4th edn. Springer, Berlin (1993) (in German) · Zbl 0788.00012 · doi:10.1007/978-3-642-58039-0
[17] Henry, D: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981) · Zbl 0456.35001
[18] Da Prato, G, Zabczyk, J: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992) · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[19] Blömker, D, Mohammed, WW: Amplitude equation for SPDEs with quadratic nonlinearities. Electron. J. Probab. 14, 2527-2550 (2009) · Zbl 1197.60061 · doi:10.1214/EJP.v14-716
[20] Hohenberg, PC, Swift, JB: Effects of additive noise at the onset of Rayleigh-Bénard convection. Phys. Rev. A 46, 4773-4785 (1992) · doi:10.1103/PhysRevA.46.4773
[21] Arnold, L: Stabilization by noise revisited. Z. Angew. Math. Mech. 70, 235-246 (1990) · Zbl 0765.93076 · doi:10.1002/zamm.19900700704
[22] Arnold, L, Crauel, H, Wihstutz, V: Stabilization of linear systems by noise. SIAM J. Control Optim. 21, 451-461 (1983) · Zbl 0514.93069 · doi:10.1137/0321027
[23] Mao, XR: Stochastic stabilization and destabilization. Syst. Control Lett. 23, 279-290 (1994) · Zbl 0820.93071 · doi:10.1016/0167-6911(94)90050-7
[24] Higham, DJ: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.