×

Strict monotonicity of the first \(q\)-eigenvalue of the fractional \(p\)-Laplace operator over annuli. (English) Zbl 1532.35328

Summary: Let \(B, B' \subset \mathbb{R}^d\) with \(d\geq 2\) be two balls such that \(B' \subset \subset B\) and the position of \(B'\) is varied within \(B\). For \(p\in (1, \infty), s\in (0,1)\), and \(q \in [1, p^*_s)\) with \(p^*_s =\frac{dp}{d-sp}\) if \(sp<d\) and \(p^*_s =\infty\) if \(sp \geq d\), let \(\lambda^s_{p,q}(B\setminus\overline{B'})\) be the first \(q\)-eigenvalue of the fractional \(p\)-Laplace operator \((-\Delta_p)^s\) in \(B\setminus \overline{B'}\) with the homogeneous nonlocal Dirichlet boundary conditions. We prove that \(\lambda^s_{p,q}(B\setminus \overline{B'})\) strictly decreases as the inner ball \(B'\) moves towards the outer boundary \(\partial B\). To obtain this strict monotonicity, we establish a strict Faber-Krahn type inequality for \(\lambda_{p,q}^s (\cdot)\) under polarization. This extends some monotonicity results obtained by S. M. Djitte et al. [Calc. Var. Partial Differ. Equ. 60, No. 6, Paper No. 231, 31 p. (2021; Zbl 1476.49051)] in the case of \((-\Delta)^s\) and \(q=1, 2\) to \((-\Delta_p)^s\) and \(q\in [1, p^*_s)\). Additionally, we provide the strict monotonicity results for the general domains that are difference of Steiner symmetric or foliated Schwarz symmetric sets in \(\mathbb{R}^d\).

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35P15 Estimates of eigenvalues in context of PDEs
35B06 Symmetries, invariants, etc. in context of PDEs
35B51 Comparison principles in context of PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R11 Fractional partial differential equations
49Q10 Optimization of shapes other than minimal surfaces
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems

Citations:

Zbl 1476.49051

References:

[1] Ahlfors, LV, Conformal invariants: topics in geometric function theory. McGraw-Hill Series in Higher Mathematics. (1973), New York-Düsseldorf-Johannesburg: McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg · Zbl 0272.30012
[2] Anoop, T.V., Ashok Kumar, A.: Domain variations of the first eigenvalue via a strict Faber-Krahn type inequality. Adv. Differ. Eqs. 28(7-8), 537-568 (2023). doi:10.57262/ade028-0708-537 · Zbl 1518.35393
[3] Anoop, TV; Bobkov, V.; Sasi, S., On the strict monotonicity of the first eigenvalue of the \(p\)-Laplacian on annuli, Trans. Amer. Math. Soc., 370, 10, 7181-7199 (2018) · Zbl 1405.35064 · doi:10.1090/tran/7241
[4] Anoop, T.V., Ashok Kumar, A., Kesavan, S.: A shape variation result via the geometry of eigenfunctions. J. Differ. Eqs. 298, 430-462 (2021). doi:10.1016/j.jde.2021.07.001 · Zbl 1470.35021
[5] Baernstein, A.: II. A unified approach to symmetrization. In: Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., XXXV, pages 47-91. Cambridge Univ. Press, Cambridge (1994) · Zbl 0830.35005
[6] Beckner, W., Sobolev inequalities, the Poisson semigroup, and analysis on the sphere \(\mathbb{S}^n\), Proc. Nat. Acad. Sci. U.S.A., 89, 11, 4816-4819 (1992) · Zbl 0766.46012 · doi:10.1073/pnas.89.11.4816
[7] Biswas, N.; Sk, F., On generalized eigenvalue problems of fractional \((p, q)\)-Laplace operator with two parameters, Proc. Roy. Soc. Edinburgh Sect. A (2023) · doi:10.1017/prm.2023.134
[8] Biswas, N.; Das, U.; Ghosh, M., On the optimization of the first weighted eigenvalue, Proc. Roy. Soc. Edinburgh Sect. A (2022) · Zbl 1531.35201 · doi:10.1017/prm.2022.60
[9] Bobkov, V.; Kolonitskii, S., On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 149, 5, 1163-1173 (2019) · Zbl 1429.35103 · doi:10.1017/prm.2018.88
[10] Bobkov, V.; Kolonitskii, S., On qualitative properties of solutions for elliptic problems with the \(p\)-Laplacian through domain perturbations, Comm. Partial Differ. Eqs., 45, 3, 230-252 (2020) · Zbl 1437.35402 · doi:10.1080/03605302.2019.1670674
[11] Brasco, L.; Franzina, G., Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37, 3, 769-799 (2014) · Zbl 1315.47054 · doi:10.2996/kmj/1414674621
[12] Brasco, L.; Lindgren, E.; Parini, E., The fractional Cheeger problem, Interfaces Free Bound., 16, 3, 419-458 (2014) · Zbl 1301.49115 · doi:10.4171/IFB/325
[13] Brock, F., Positivity and radial symmetry of solutions to some variational problems in \(\mathbb{R}^N\), J. Math. Anal. Appl., 296, 1, 226-243 (2004) · Zbl 1067.49017 · doi:10.1016/j.jmaa.2004.04.006
[14] Chen, W.; Li, C., Maximum principles for the fractional \(p\)-Laplacian and symmetry of solutions, Adv. Math., 335, 735-758 (2018) · Zbl 1395.35055 · doi:10.1016/j.aim.2018.07.016
[15] Chiti, G., Rearrangements of functions and convergence in Orlicz spaces, Applicable Anal., 9, 1, 23-27 (1979) · Zbl 0424.46023 · doi:10.1080/00036817908839248
[16] De Nápoli, P.; Fernández Bonder, J.; Salort, A., A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces, Complex Var. Elliptic Equ., 66, 4, 546-568 (2021) · Zbl 1472.46028 · doi:10.1080/17476933.2020.1729139
[17] Djitte, SM; Fall, MM; Weth, T., A fractional Hadamard formula and applications, Calc. Var. Partial Differ. Eqs., 60, 6, 31 (2021) · Zbl 1476.49051 · doi:10.1007/s00526-021-02094-3
[18] Franzina, G., Non-local torsion functions and embeddings, Appl. Anal., 98, 10, 1811-1826 (2019) · Zbl 1418.35283 · doi:10.1080/00036811.2018.1463521
[19] Harrell, EM II; Kröger, P.; Kurata, K., On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal., 33, 1, 240-259 (2001) · Zbl 0994.47015 · doi:10.1137/S0036141099357574
[20] Hersch, J.: The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math., 13: 1229-1238 (1963). http://projecteuclid.org/euclid.pjm/1103034558 · Zbl 0127.40603
[21] Iannizzotto, A.; Mosconi, S.; Squassina, M., Global Hölder regularity for the fractional \(p\)-Laplacian, Rev. Mat. Iberoam., 32, 4, 1353-1392 (2016) · Zbl 1433.35447 · doi:10.4171/RMI/921
[22] Jarohs, S.; Weth, T., Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. (4), 195, 1, 273-291 (2016) · Zbl 1346.35010 · doi:10.1007/s10231-014-0462-y
[23] Kesavan, S., On two functionals connected to the Laplacian in a class of doubly connected domains, Proc. Roy. Soc. Edinburgh Sect. A, 133, 3, 617-624 (2003) · Zbl 1046.35021 · doi:10.1017/S0308210500002560
[24] Sciunzi, B., Regularity and comparison principles for \(p\)-Laplace equations with vanishing source term, Commun. Contemp. Math., 16, 6, 1450013,20 (2014) · Zbl 1323.35050 · doi:10.1142/S0219199714500138
[25] Solynin, AY, Continuous symmetrization via polarization, Algebra I Analiz, 24, 1, 157-222 (2012) · Zbl 1291.30146 · doi:10.1090/S1061-0022-2012-01234-3
[26] Weth, T., Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods, Jahresber. Dtsch. Math.-Ver., 112, 3, 119-158 (2010) · Zbl 1206.35115 · doi:10.1365/s13291-010-0005-4
[27] Wolontis, V., Properties of conformal invariants, Amer. J. Math., 74, 587-606 (1952) · Zbl 0047.08001 · doi:10.2307/2372264
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.