Boukhsas, A.; Zerouali, A.; Chakrone, O.; Karim, B. On a positive solutions for \((p, q)\)-Laplacian Steklov problem with two parameters. (English) Zbl 07801869 Bol. Soc. Parana. Mat. (3) 40, Paper No. 81, 19 p. (2022). Summary: We study the existence and non-existence of positive solutions for \((p, q)\)-Laplacian Steklov problem with two parameters. The main result of our research is the construction of a continuous curve in plane, which becomes a threshold between the existence and non-existence of positive solutions. MSC: 35J92 Quasilinear elliptic equations with \(p\)-Laplacian 35J20 Variational methods for second-order elliptic equations 35J62 Quasilinear elliptic equations 35J70 Degenerate elliptic equations 35P05 General topics in linear spectral theory for PDEs 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs Keywords:\((p, q)\)-Laplacian; nonlinear boundary conditions; indefinite weight; mountain pass theorem; global minimizer; super- and sub-solution; modified Picones identity × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem with inde?nite weight, Bol. Soc. Paran. Mat. V. 29 1 (2011), 17-23. · Zbl 1413.32009 [2] R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, Pitman, London, 1978. · Zbl 0392.93003 [3] V. , A. M. Micheletti, D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, J. Differential Equations, 184, No.2 (2002), 299-320. · Zbl 1157.35348 [4] Andrzej Szulkin and Tobias Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, Somerville, MA, 2010, pp. 597?632. · Zbl 1218.58010 [5] Bobkov, V., and Il?yasov, Y. Maximal existence domains of positive solutions for two-parametric systems of elliptic equations. arXiv preprint arXiv:1406.5275 (2014). [6] Bobkov, V., and Tanaka, M. On positive solutions for (p, q)-Laplace equations with two parameters. Calculus of Variations and Partial Differential Equations 54.3 (2015): 3277?3301. DOI:10.1007/s00526-015-0903-5 (Cited on pages 1, 2, 4, 6, 14, 18, and 22). · Zbl 1328.35052 · doi:10.1007/s00526-015-0903-5 [7] N.Benouhiba and Z. Belyacine, On the solutions of (p, q)-Laplacian problem at resonance, Nonlinear Anal. 77 (2013), 74-81. · Zbl 1255.35036 [8] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28, Springer Verlag, Berlin-New York, 1979. · Zbl 0403.92004 [9] Il?yasov, Y. On positive solutions of indefinite elliptic equations. Comptes Rendus de l?Acad?mie des Sciences-Series I-Mathematics 333, 6 (2001), 533?538. · Zbl 0987.35065 [10] Ilyasov, Y. S. Bifurcation calculus by the extended functional method. Functional Analysis and Its Applications 41, 1 (2007), 18?30. · Zbl 1124.35307 [11] J. Fernandez Bonder and Julio D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (2002), 221-235. · Zbl 1014.35070 [12] S. A. Marano and N. S. Papageorgiou, Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems, Non-linear Anal. TMA, 77 (2013), 118-129. · Zbl 1260.35036 [13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian System, Springer-Verlag, New York, 1989. · Zbl 0676.58017 [14] M. Mihailescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal. 10 (2011), 701-708. · Zbl 1229.35031 [15] D. Motreanu and M. Tanaka, Generalized eigenvalue problems of nonho-mogeneous elliptic operators and their appli-cation, Pacific J. Math. 265 (2013), 151-184. · Zbl 1303.35051 [16] N. E. Sidiropoulos, Existence of solutions to indefinite quasilinear elliptic problems of (p, q)-Laplacian type, Elect. J. Diff. Equ. 2010 no.162 (2010), 1-23. · Zbl 1205.35138 [17] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1996. · Zbl 0864.49001 [18] M. Tanaka, Generalized eigenvalue problems for (p, q)-Laplace equation with indefinite weight, J. Math. Anal. Appl., 2014, Vol. 419(2), 1181-1192. · Zbl 1294.35051 [19] J. L. Vazquez, A strong maximum principle for some quasi-linear elliptic equations, Appl.Math. Optim., 1984, 191-202. · Zbl 0561.35003 [20] H. Yin and Z. Yang, A class of (p, q)-Laplacian type equation with noncaveconvex nonlinearities in bounded domain, J. Math. Anal. Appl. 382 (2011), 843-855. · Zbl 1222.35083 [21] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, On a positive solution for (p; q)-Laplace equation with Nonlinear Boundary Conditions and indefinite weights, Bol. Soc. Paran. Mat., Vol. 38/4 (2020), 219-233. · Zbl 1431.35027 [22] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, Resonant Steklov eigenvalue problem involving the (p; q)-Laplacian, Afrika Matematika, Vol.30/1 (2018), pp. 171-179. · Zbl 1438.35179 [23] G. Li, G. Zhang, Multiple solutions for the (p, q)-Laplacian problem with critical exponent, Acta Mathematica Scientia, 29B, No.4 (2009), 903-918. · Zbl 1212.35125 [24] Zeidler, E. Nonlinear Functional Analysis and its Application III.: Vari-ational Methods and Optimization. Springer-Verlag GmbH, 1985. · Zbl 0583.47051 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.