Barbu, Luminiţa; Burlacu, Andreea; Moroşanu, Gheorghe An eigenvalue problem involving the \((p, q)\)-Laplacian with a parametric boundary condition. (English) Zbl 1518.35395 Mediterr. J. Math. 20, No. 4, Paper No. 232, 18 p. (2023). Summary: Let \(\Omega\subset\mathbb{R}^N\), \(N \geq 2\), be a bounded domain with smooth boundary \(\partial\Omega\). Consider the following nonlinear eigenvalue problem \[ \begin{cases} -\Delta_p u-\Delta_q u + \rho(x)|u|^{q-2}u = \lambda\alpha(x)|u|^{r-2}u \text{ in }\Omega ,\\ \frac{\partial u}{\partial\nu_{pq}} + \gamma(x)|u|^{q-2}u = \lambda\beta (x)|u|^{r-2}u \text{ on }\partial\Omega, \end{cases} \] where \(p, q, r\in(1, \infty)\) with \(p \neq q\); \(\alpha, \rho \in L^\infty(\Omega)\), \(\beta, \gamma \in L^\infty(\partial\Omega)\), \(\Delta_\theta u:= \operatorname{div}(\|\nabla u\|^{\theta - 2}\nabla u)\), \(\theta\in\{p, q\}\), and \(\frac{\partial u}{\partial\nu_{pq}}\) denotes the conormal derivative corresponding to the differential operator \(-\Delta_p - \Delta_q\). Under suitable assumptions, we provide the full description of the spectrum of the above problem in eight cases out of ten, and for the other two complementary cases, we obtain subsets of the corresponding spectra. Notice that when some of the potentials \(\alpha\), \(\beta\), \(\rho\), \(\gamma\) are null functions, the above eigenvalue problem reduces to Neumann-, Robin- or Steklov-type problems, and so we obtain the spectra of these particular eigenvalue problems. MSC: 35J92 Quasilinear elliptic equations with \(p\)-Laplacian 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs Keywords:\((p, q)\)-Laplacian; spectrum; eigenvalues; Krasnosel’skiĭ genus; Ljusternik-Schnirelmann theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Barbu, L.; Moroşanu, G., Full description of the eigenvalue set of the \((p, q)\)-Laplacian with a Steklov-like boundary condition, J. Differ. Eqs., 290, 1, 1-16 (2021) · Zbl 1467.35185 · doi:10.1016/j.jde.2021.04.023 [2] Bonheure, D.; Colasuonno, F.; Földes, J., On the Born-Infeld equation for electrostatic fields with a superposition of point charges, Ann. Mat. Pura Appl., 198, 749-772 (2019) · Zbl 1420.35395 · doi:10.1007/s10231-018-0796-y [3] Fortunato, D.; Orsina, L.; Pisani, L., Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43, 5698-5706 (2002) · Zbl 1060.78004 · doi:10.1063/1.1508433 [4] Benci, V.; D’Avenia, P.; Fortunato, D., Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154, 297-324 (2000) · Zbl 0973.35161 · doi:10.1007/s002050000101 [5] Benci, V.; Fortunato, D.; Pisani, L., Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys., 10, 315-344 (1998) · Zbl 0921.35177 · doi:10.1142/S0129055X98000100 [6] Cherfils, L.; Il’yasov, Y., On the stationary solutions of generalized reaction diffusion equations with p &q-Laplacian, Commun. Pure Appl. Anal., 4, 9-22 (2002) · Zbl 1210.35090 · doi:10.3934/cpaa.2005.4.9 [7] Marcellini, P., Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equ., 90, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6 [8] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675-710 (1986); English translation in Math. USSR-Izv. 29, 33-66 (1987) · Zbl 0599.49031 [9] Von Below, J.; François, G., Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition, Bull. Belg. Math. Soc. Simon Stevin, 12, 4, 505-519 (2005) · Zbl 1132.35423 [10] François, G., Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions, Asymptot. Anal., 46, 1, 43-52 (2006) · Zbl 1128.35077 [11] Arora, R.; Shmarev, S., Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonlinear Anal., 12, 1, 304-335 (2022) · Zbl 1500.35203 · doi:10.1515/anona-2022-0271 [12] Huang, Z., The weak solutions of a nonlinear parabolic equation from two-phase problem, J. Inequal. Appl., 149, 1-19 (2021) · Zbl 1504.35170 [13] Marcellini, P., A variational approach to parabolic equations under general and \(p, q-\) growth conditions, Nonlinear Anal., 194 (2020) · Zbl 1436.35235 · doi:10.1016/j.na.2019.02.010 [14] Marano, S.; Mosconi, S.; Papageorgiou, NS, On a \((p, q)-\) Laplacian problem with parametric concave term and asymmetric perturbation, Rend. Lincei Mat. Appl., 29, 109-125 (2018) · Zbl 1394.35154 [15] Bobkov, V.; Tanaka, M., On the Fredholm-type theorems and sign properties of solutions for \((p, q)-\) Laplace equations with two parameters, Annali di Matematica., 198, 1651-1673 (2019) · Zbl 1435.35183 · doi:10.1007/s10231-019-00836-x [16] Barbu, L.; Moroşanu, G., On a Steklov eigenvalue problem associated with the \((p, q)-\) Laplacian, Carpathian J. Math., 37, 161-171 (2021) · Zbl 1488.35409 · doi:10.37193/CJM.2021.02.02 [17] Gyulov, T.; Moroşanu, G., Eigenvalues of \(-(\Delta_p+\Delta_q)\) under a Robin-like boundary condition, Ann. Acad. Rom. Sci. Ser. Math. Appl., 8, 114-131 (2016) · Zbl 1355.35069 [18] Papageorgiou, NS; Vetro, C.; Vetro, F., Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, J. Differ. Equ., 268, 4102-4118 (2020) · Zbl 1439.35152 · doi:10.1016/j.jde.2019.10.026 [19] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations. (2011), New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7 [20] Denkowski, Z.; Migórski, S.; Papageorgiou, NS, An Introduction to Nonlinear Analysis: Theory (2003), New York: Springer Science & Business Media, New York · Zbl 1040.46001 · doi:10.1007/978-1-4419-9158-4 [21] Adams, R.; Fournier, J., Sobolev Spaces. Pure and Applied Mathematics. (2003), New York-London: Academic Press, New York-London · Zbl 1098.46001 [22] Szulkin, A., Ljusternik-Schnirelmann theory on \(C^1-\) manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 2, 119-139 (1988) · Zbl 0661.58009 · doi:10.1016/s0294-1449(16)30348-1 [23] Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. Proc. CIME, 139-195 (1974) [24] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (1996), Berlin: Springer, Berlin · Zbl 0864.49001 · doi:10.1007/978-3-662-03212-1 [25] Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. III, Variational Methods and Optimization. (1985), Berlin: Springer, Berlin · Zbl 0583.47051 [26] Szulkin, A.; Weth, T., The Method of Nehary Manifold. Handbook of Nonconvex Analysis and Applications. (2010), Somerville, MA: Int. Press, Somerville, MA [27] Barbu, L.; Moroşanu, G., Eigenvalues of the negative (p, q)- Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic Equ., 64, 4, 685-700 (2019) · Zbl 1416.35124 · doi:10.1080/17476933.2018.1477769 [28] Gasiński, L.; Papageorgiou, NS, Exercises in Analysis Part 2: Nonlinear Analysis (2016), Switzerland: Springer International Publishing, Switzerland · Zbl 1351.00006 · doi:10.1007/978-3-319-27817-9 [29] Lê, A., Eigenvalue problems for p-Laplacian, Nonlinear Anal., 64, 1057-1099 (2006) · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056 [30] Benci, V.; Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11, 283-293 (1998) · Zbl 0926.35125 · doi:10.12775/TMNA.1998.019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.