Dhanya, R.; Pramanik, Sarbani; Harish, R. On a class of infinite semipositone problems for \((p,q)\) Laplace operator. (English) Zbl 1534.35386 Asymptotic Anal. 136, No. 3-4, 291-307 (2024). Summary: We analyze a non-linear elliptic boundary value problem that involves \((p,q)\) Laplace operator, for the existence of its positive solution in an arbitrary smooth bounded domain. The non-linearity here is driven by a singular, monotonically increasing continuous function in \((0, \infty)\) which is eventually positive. The novelty in proving the existence of a positive solution lies in the construction of a suitable subsolution. Our contribution marks an advancement in the theory of existence of positive solutions for infinite semipositone problems in arbitrary bounded domains, whereas the prevailing theory is limited to addressing similar problems only in symmetric domains. Additionally, using the ideas pertaining to the construction of subsolution, we establish the exact behavior of the solutions of “q-sublinear” problem involving \((p,q)\) Laplace operator when the parameter \(\lambda\) is very large. The parameter estimate that we derive is non-trivial due to the non-homogeneous nature of the operator and is of independent interest. MSC: 35Q60 PDEs in connection with optics and electromagnetic theory 78A02 Foundations in optics and electromagnetic theory 78A35 Motion of charged particles 83A05 Special relativity 35A21 Singularity in context of PDEs 35B09 Positive solutions to PDEs 35B40 Asymptotic behavior of solutions to PDEs 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35J75 Singular elliptic equations Keywords:\((p,q)\)-Laplacian; infinite semipositone problem; maximal solution; asymptotic estimate; singular problem × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] T. Alotaibi and D. Hai, On singular quasilinear problems with sign-changing coefficients, Complex Variables and Elliptic Equations 65(3) (2020), 481-488. doi:10.1080/17476933.2019.1622689. · Zbl 1433.35144 · doi:10.1080/17476933.2019.1622689 [2] C.O. Alves, A.R. de Holanda and J.A. dos Santos, Existence of positive solutions for a class of semipositone problem in whole R N , Proceedings of the Royal Society of Edinburgh Section A: Mathematics 150(5) (2020), 2349-2367. doi:10. 1017/prm.2019.20. · Zbl 1459.35206 · doi:10.1017/prm.2019.20 [3] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM review 18(4) (1976), 620-709. doi:10.1137/1018114. · Zbl 0345.47044 · doi:10.1137/1018114 [4] R. Dhanya et al. / Infinite semipositone problem for (p, q) Laplacian [5] G. Anello and F. Faraci, Two solutions for an elliptic problem with two singular terms, Calculus of Variations and Partial Differential Equations 56(4) (2017), 1-31. · Zbl 1376.35002 [6] G.M. Bisci, V.D. Rȃdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Vol. 162, Cambridge University Press, 2016. · Zbl 1356.49003 [7] V. Bobkov and M. Tanaka, Generalized Picone inequalities and their applications to (p, q)-Laplace equations, Open Mathematics 18(1) (2020), 1030-1044. doi:10.1515/math-2020-0065. · Zbl 1480.35266 · doi:10.1515/math-2020-0065 [8] D. Bonheure, P. d’Avenia and A. Pomponio, On the electrostatic Born-Infeld equation with extended charges, Communi-cations in Mathematical Physics 346(3) (2016), 877-906. doi:10.1007/s00220-016-2586-y. · Zbl 1365.35170 · doi:10.1007/s00220-016-2586-y [9] A. Castro and R. Shivaji, Non-negative solutions for a class of non-positone problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 108(3-4) (1988), 291-302. doi:10.1017/S0308210500014670. · Zbl 0659.34018 · doi:10.1017/S0308210500014670 [10] A. Castro and G. Sudhasree, Uniqueness of stable and unstable positive solutions for semipositone problems, Nonlinear Analysis: Theory, Methods & Applications 22(4) (1994), 425-429. doi:10.1016/0362-546X(94)90166-X. · Zbl 0804.35038 · doi:10.1016/0362-546X(94)90166-X [11] L. Cherfils and Y. Il’Yasov, On the stationary solutions of generalized reaction diffusion equations with p q-Laplacian, Communications on Pure & Applied Analysis 4(1) (2005), 9. doi:10.3934/cpaa.2005.4.9. · Zbl 1210.35090 · doi:10.3934/cpaa.2005.4.9 [12] M. Chhetri, P. Drábek and R. Shivaji, Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145(5) (2015), 925-936. doi:10.1017/ S0308210515000220. · Zbl 1335.35080 · doi:10.1017/S0308210515000220 [13] M. Choubin, S.H. Rasouli, M.B. Ghaemi and G.A. Afrouzi, Positive solutions for a class of infinite semipositone problems involving the p-Laplacian operator, Le Matematiche 68(2) (2013), 159-166. · Zbl 1281.35050 [14] U. Das, A. Muthunayake and R. Shivaji, Existence results for a class of p-q Laplacian semipositone boundary value problems, Electronic Journal of Qualitative Theory of Differential Equations 2020(88) (2020), 1-7. doi:10.14232/ejqtde. 2020.1.88. · Zbl 1474.35227 · doi:10.14232/ejqtde.2020.1.88 [15] R. Dhanya, Positive solution curves of an infinite semipositone problem, Electronic Journal of Differential Equations 2018(178) (2018), 1. · Zbl 1403.35093 [16] R. Dhanya and M.S. Indulekha, Parameter estimates and a uniqueness result for double phase problem with a singu-lar nonlinearity, Journal of Mathematical Analysis and Applications 530(1) (2024), 127608. doi:10.1016/j.jmaa.2023. 127608. · Zbl 1526.35194 · doi:10.1016/j.jmaa.2023.127608 [17] R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, Journal of Mathematical Analysis and Applications 424(1) (2015), 598-612. doi:10.1016/j.jmaa.2014.11.012. · Zbl 1310.35130 · doi:10.1016/j.jmaa.2014.11.012 [18] J. Díaz, J. Hernández and F. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, Journal of mathematical analysis and applications 352(1) (2009), 449-474. doi:10.1016/j.jmaa.2008. 07.073. · Zbl 1173.35055 · doi:10.1016/j.jmaa.2008.07.073 [19] L.F. Faria, O.H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with the (p, q)-Laplacian and a convection term, Proceedings of the Edinburgh Mathematical Society 57(3) (2014), 687-698. doi:10.1017/ S0013091513000576. · Zbl 1315.35114 · doi:10.1017/S0013091513000576 [20] P.C. Fife, Lecture notes in biomathematics, Mathematical Aspects of Reacting and Diffusing Systems 28 (1979), 185. · Zbl 0403.92004 [21] G.M. Figueiredo, Existence and multiplicity of solutions for a class of p & q elliptic problems with critical exponent, Mathematische Nachrichten 286(11-12) (2013), 1129-1141. doi:10.1002/mana.201100237. · Zbl 1278.35094 · doi:10.1002/mana.201100237 [22] L. Gasiński and P. Winkert, Existence and uniqueness results for double phase problems with convection term, Journal of Differential Equations 268(8) (2020), 4183-4193. doi:10.1016/j.jde.2019.10.022. · Zbl 1435.35172 · doi:10.1016/j.jde.2019.10.022 [23] J. Giacomoni, D. Kumar and K. Sreenadh, Sobolev and Hölder regularity results for some singular nonhomogeneous quasilinear problems, Calculus of Variations and Partial Differential Equations 60(3) (2021), 1-33. doi:10.1007/s00526-021-01994-8. · Zbl 1467.35158 · doi:10.1007/s00526-021-01994-8 [24] J. Goddard, E.K. Lee, L. Sankar and R. Shivaji, Existence results for classes of infinite semipositone problems, Boundary Value Problems 2013(1) (2013), 1. doi:10.1186/1687-2770-2013-1. · Zbl 1294.34087 · doi:10.1186/1687-2770-2013-1 [25] D. Hai, Singular boundary value problems for the p-Laplacian, Nonlinear Analysis: Theory, Methods & Applications 73(9) (2010), 2876-2881. doi:10.1016/j.na.2010.06.037. · Zbl 1198.35114 · doi:10.1016/j.na.2010.06.037 [26] D. Hai, On a class of singular p-Laplacian boundary value problems, Journal of mathematical analysis and applications 383(2) (2011), 619-626. doi:10.1016/j.jmaa.2011.05.060. · Zbl 1223.35137 · doi:10.1016/j.jmaa.2011.05.060 [27] D. Hai, L. Sankar and R. Shivaji, Infinite semipositone problems with asymptotically linear growth forcing terms, Differ-ential and Integral Equations 25(11/12) (2012), 1175-1188. · Zbl 1274.35089 [28] D. Hai, R. Shivaji and X. Wang, Positive radial solutions for a class of (p, q) Laplacian in a ball, Positivity 27(1) (2023), 1-8. doi:10.1007/s11117-022-00959-1. · Zbl 1518.34025 · doi:10.1007/s11117-022-00959-1 [29] D. Hai and J. Williams, Positive radial solutions for a class of quasilinear boundary value problems in a ball, Nonlinear Analysis: Theory, Methods & Applications 75(4) (2012), 1744-1750. doi:10.1016/j.na.2011.08.052. · Zbl 1242.34040 · doi:10.1016/j.na.2011.08.052 [30] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equa-tions, Communications in Partial Differential Equations 16(2-3) (1991), 311-361. doi:10.1080/03605309108820761. · Zbl 0742.35028 · doi:10.1080/03605309108820761 [31] P. Lindqvist, On the equation div(|∇u| p-2 ∇u) + λ|u| p-2 u = 0, Proceedings of the American Mathematical Society 109(1) (1990), 157-164, http://www.jstor.org/stable/2048375. · Zbl 0714.35029 [32] S.A. Marano and S.J. Mosconi, Some recent results on the Dirichlet problem for (p, q)-Laplace equations, Discrete & Continuous Dynamical Systems-Series S 11(2) (2018), 279-291. doi:10.3934/dcdss.2018015. · Zbl 1374.35137 · doi:10.3934/dcdss.2018015 [33] N.S. Papageorgiou, A. Pudełko and V.D. Rȃdulescu, Non-autonomous (p, q)-equations with unbalanced growth, Mathe-matische Annalen 385(3-4) (2023), 1707-1745. doi:10.1007/s00208-022-02381-0. · Zbl 1511.35197 · doi:10.1007/s00208-022-02381-0 [34] N.S. Papageorgiou, V.D. Rȃdulescu and D.D. Repovš, Nonlinear nonhomogeneous singular problems, Calculus of Varia-tions and Partial Differential Equations 59(1) (2020), 1-31. doi:10.1007/s00526-019-1640-y. · doi:10.1007/s00526-019-1640-y [35] N.S. Papageorgiou, V.D. Rȃdulescu and Y. Zhang, Strongly singular double phase problems, Mediterranean Journal of Mathematics 19(2) (2022), 82. doi:10.1007/s00009-022-02013-6. · Zbl 1485.35224 · doi:10.1007/s00009-022-02013-6 [36] A. Pomponio and T. Watanabe, Some quasilinear elliptic equations involving multiple p-Laplacians, Indiana University Mathematics Journal (2018), 2199-2224. doi:10.1512/iumj.2018.67.7523. · Zbl 1417.35048 · doi:10.1512/iumj.2018.67.7523 [37] S. Prashanth and K. Sreenadh, Multiplicity results in a ball for p-Laplace equation with positive nonlinearity, Adv. Differ-ential Equations 7(7) (2002), 877-896. doi:10.57262/ade/1356651709. · Zbl 1033.35039 · doi:10.57262/ade/1356651709 [38] I. Sim and B. Son, Positive solutions to classes of infinite semipositone (p, q)-Laplace problems with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications 494(1) (2021), 124577. doi:10.1016/j.jmaa.2020.124577. · Zbl 1483.34043 · doi:10.1016/j.jmaa.2020.124577 [39] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Applied Mathematics and Optimization 12(1) (1984), 191-202. doi:10.1007/BF01449041. · Zbl 0561.35003 · doi:10.1007/BF01449041 [40] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Mathematics of the USSR-Izvestiya 29(1) (1987), 33. doi:10.1070/IM1987v029n01ABEH000958. · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.