×

The Cheeger problem in abstract measure spaces. (English) Zbl 1536.49036

The Cheeger constant of a set \(\Omega\subset \mathbb R^n\) is given by \[ h(\Omega)=\inf\left\{\frac{P(E)}{|E|} : E\subset \Omega,\,|E|>0\right\} \] where \(P(E)\) is a variational perimeter of \(E\) and \(|E|\) is the \(n\)-dimensional Lebesgue measure of \(E\). A lot of results are known as well as numerous applications, even for the problem on general measure spaces. The authors want to study the Cheeger problem on general measure spaces, instead of \(\mathbb R^n\), and a correspondingly more general notion of perimeter. In this paper the authors are interested in finding minimal assumptions on the space and on the perimeter functional in such a way it is possible to prove some of the most important properties of Cheeger sets: existence, link to sets with prescribed mean curvature, link to the first eigenvalue of the Dirichlet 1-Laplacian, link to the Dirichlet \(p\)-Laplacian and \(p\)-torsion.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
35P15 Estimates of eigenvalues in context of PDEs
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] A.Abolarinwa, A.Ali, and A.Alkhadi, Weighted Cheeger constant and first eigenvalue lower bound estimates on smooth metric measure spaces, Adv. Difference Equ.2021 (2021), Paper No. 273, 15. MR4267584. · Zbl 1494.58012
[2] E.Abreu and L. G.FernandesJr., On the existence and nonexistence of isoperimetric inequalities with different monomial weights, J. Fourier Anal. Appl.28 (2022), no. 1, Paper No. 12, 33. MR4371058. · Zbl 1496.46027
[3] V.Agostiniani, M.Fogagnolo, and L.Mazzieri, Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math.222 (2020), no. 3, 1033-1101. MR4169055. · Zbl 1467.53062
[4] A.Agrachev, D.Barilari, and U.Boscain, A comprehensive introduction to sub‐Riemannian geometry, Cambridge Studies in Advanced Mathematics, vol. 181, Cambridge University Press, Cambridge, 2020. From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. MR3971262. · Zbl 1487.53001
[5] F.Alter, V.Caselles, and A.Chambolle, A characterization of convex calibrable sets in \(\mathbb{R}^N\), Math. Ann.332 (2005), no. 2, 329-366. MR2178065. · Zbl 1108.35073
[6] A.Alvino, F.Brock, F.Chiacchio, A.Mercaldo, and M. R.Posteraro, Some isoperimetric inequalities on \(\mathbb{R}^N\) with respect to weights \(\vert x\vert^\alpha \), J. Math. Anal. Appl.451 (2017), no. 1, 280-318. MR3619238. · Zbl 1367.49005
[7] A.Alvino, F.Brock, F.Chiacchio, A.Mercaldo, and M. R.Posteraro, Some isoperimetric inequalities with respect to monomial weights, ESAIM Control Optim. Calc. Var.27 (2021), Paper No. S3, 29. MR4222168. · Zbl 1468.39012
[8] S.Amato, G.Bellettini, and L.Tealdi, Anisotropic mean curvature on facets and relations with capillarity, Geom. Flows1 (2015), no. 1, 80-110. MR3393394. · Zbl 1386.74109
[9] L.Ambrosio, Calculus, heat flow and curvature‐dimension bounds in metric measure spaces, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Vol. I, Plenary lectures, 2018, pp. 301-340. MR3966731. · Zbl 1475.30129
[10] L.Ambrosio and S.Di Marino, Equivalent definitions of \(BV\) space and of total variation on metric measure spaces, J. Funct. Anal.266 (2014), no. 7, 4150-4188. MR3170206. · Zbl 1302.26012
[11] L.Ambrosio, S.Di Marino, and N.Gigli, Perimeter as relaxed Minkowski content in metric measure spaces, Nonlinear Anal.153 (2017), 78-88. MR3614662. · Zbl 1359.28002
[12] L.Ambrosio, N.Fusco, and D.Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR1857292. · Zbl 0957.49001
[13] L.Ambrosio, N.Gigli, and G.Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math.195 (2014), no. 2, 289-391. MR3152751. · Zbl 1312.53056
[14] G.Antonelli, E.Pasqualetto, and M.Pozzetta, Isoperimetric sets in spaces with lower bounds on the Ricci curvature, Nonlinear Anal.220 (2022), Paper No. 112839, 59. MR4390485. · Zbl 1501.53053
[15] G.Antonelli, E.Pasqualetto, M.Pozzetta, and D.Semola, Sharp isoperimetric comparison on non collapsed spaces with lower Ricci bounds, Ann. Sci. École Norm. Supér. (4), to appear. Preprint Available at arXiv:2201.04916.
[16] B.Appleton and H.Talbot, Globally minimal surfaces by continuous maximal flows, IEEE Trans. Pattern Anal. Mach. Intell.28 (2006), no. 1, 106-118.
[17] T. S. V.Bang, An inequality for real functions of a real variable and its application to the Prime Number Theorem, On Approximation Theory (Proceedings of Conference in Oberwolfach, 1963), 1964, pp. 155-160. MR182615. · Zbl 0128.26903
[18] M.Barchiesi, A.Brancolini, and V.Julin, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality, Ann. Probab.45 (2017), no. 2, 668-697. MR3630285. · Zbl 1377.49050
[19] E.Barozzi and U.Massari, Variational mean curvatures in abstract measure spaces, Calc. Var. Partial Differential Equations55 (2016), no. 4, Art. 75, 16. MR3513213. · Zbl 1358.49042
[20] G.Bellettini, V.Caselles, and M.Novaga, The total variation flow in \(\mathbb{R}^N\), J. Differential Equations184 (2002), no. 2, 475-525. MR1929886. · Zbl 1036.35099
[21] G.Bellettini, M.Novaga, and M.Paolini, Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound.3 (2001), no. 4, 415-446. MR1869587. · Zbl 0989.35127
[22] B.Benson, The Cheeger constant, isoperimetric problems, and hyperbolic surfaces, available at arXiv:1509.08993, (2015).
[23] K.Bessas, Fractional total variation denoising model with \(L^1\) fidelity, Nonlinear Anal.222 (2022), Paper No. 112926, 20. MR4419012. · Zbl 1495.49032
[24] K.Bessas and G.Stefani, Non‐local \(BV\) functions and a denoising model with \(L^1\) fidelity, Adv. Calc. Var.https://doi.org/10.1515/acv-2023-0082 · Zbl 07965616 · doi:10.1515/acv-2023-0082
[25] V.Bobkov and E.Parini, On the higher Cheeger problem, J. London Math. Soc. (2)97 (2018), no. 3, 575-600. MR3816400. · Zbl 1394.49041
[26] V.Bobkov and E.Parini, On the Cheeger problem for rotationally invariant domains, Manuscripta Math.166 (2021), no. 3-4, 503-522. MR4325960. · Zbl 1477.49063
[27] C.Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math.30 (1975), no. 2, 207-216. MR0399402. · Zbl 0292.60004
[28] L.Brasco, E.Lindgren, and E.Parini, The fractional Cheeger problem, Interfaces Free Bound.16 (2014), no. 3, 419-458. MR3264796. · Zbl 1301.49115
[29] S.Brendle, Sobolev inequalities in manifolds with nonnegative curvature, Comm. Pure Appl. Math.76 (2023), no. 9, 2192-2218. MR4612577. · Zbl 1527.53030
[30] D.Bucur and I.Fragalà, Proof of the honeycomb asymptotics for optimal Cheeger clusters, Adv. Math.350 (2019), 97-129. MR3946306. · Zbl 1418.52006
[31] D.Bucur, I.Fragalà, B.Velichkov, and G.Verzini, On the honeycomb conjecture for a class of minimal convex partitions, Trans. Amer. Math. Soc.370 (2018), no. 10, 7149-7179. MR3841845. · Zbl 1396.52024
[32] H.Bueno and G.Ercole, Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl.381 (2011), no. 1, 263-279. MR2796208. · Zbl 1260.49080
[33] H. P.Bueno, G.Ercole, S. S.Macedo, and G. A.Pereira, Torsion functions and the Cheeger problem: a fractional approach, Adv. Nonlinear Stud.16 (2016), no. 4, 689-697. MR3562937. · Zbl 1348.35151
[34] V.Buffa, M.Collins, and C. P.Camacho, Existence of parabolic minimizers to the total variation flow on metric measure spaces, Manuscripta Math.170 (2023), no. 1-2, 109-145. MR4533480. · Zbl 1508.49003
[35] V.Buffa, J.Kinnunen, and C.Pacchiano Camacho, Variational solutions to the total variation flow on metric measure spaces, Nonlinear Anal.220 (2022), Paper No. 112859, 31. MR4396582. · Zbl 1492.30118
[36] P.Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Supér. (4)15 (1982), no. 2, 213-230. MR683635. · Zbl 0501.53030
[37] G.Buttazzo and B.Velichkov, Shape optimization problems on metric measure spaces, J. Funct. Anal.264 (2013), no. 1, 1-33. MR2995698. · Zbl 1255.49073
[38] X.Cabré and X.Ros‐Oton, Sobolev and isoperimetric inequalities with monomial weights, J. Differential Equations255 (2013), no. 11, 4312-4336. MR3097258. · Zbl 1293.46018
[39] X.Cabré, X.Ros‐Oton, and J.Serra, Euclidean balls solve some isoperimetric problems with nonradial weights, C. R. Math. Acad. Sci. Paris350 (2012), no. 21-22, 945-947. MR2996771. · Zbl 1258.52001
[40] L.Cadeddu, S.Gallot, and A.Loi, Maximizing mean exit‐time of the Brownian motion on Riemannian manifolds, Monatsh. Math.176 (2015), no. 4, 551-570. MR3320918. · Zbl 1317.49053
[41] A.Cañete, Cheeger sets for rotationally symmetric planar convex bodies, Results Math.77 (2022), no. 1, Paper No. 9, 15. MR4336272. · Zbl 1476.52001
[42] L.Capogna, D.Danielli, and N.Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom.2 (1994), no. 2, 203-215. MR1312686. · Zbl 0864.46018
[43] A.Carbotti, S.Cito, D. A.La Manna, and D.Pallara, Asymptotics of the \(s\)‐fractional Gaussian perimeter as \(s\rightarrow 0^+\), Fract. Calc. Appl. Anal.25 (2022), no. 4, 1388-1403. MR4468518. · Zbl 1503.28004
[44] A.Carbotti, S.Cito, D. A.La Manna, and D.Pallara, Gamma‐convergence of Gaussian fractional perimeter, Adv. Calc. Var.16 (2023), no. 3, 571-595. MR4609800. · Zbl 1519.49009
[45] A.Carbotti, S.Cito, D. A.La Manna, and D.Pallara, A quantitative dimension free isoperimetric inequality for the fractional Gaussian perimeter, Commun. Anal. Geom., to appear. Preprint available at arXiv:2011.10451.
[46] G.Carlier and M.Comte, On a weighted total variation minimization problem, J. Funct. Anal.250 (2007), no. 1, 214-226. MR2345913. · Zbl 1120.49011
[47] M.Caroccia, Cheeger \(N\)‐clusters, Calc. Var. Partial Differential Equations56 (2017), no. 2, Paper No. 30, 35. MR3610172. · Zbl 1366.49052
[48] M.Caroccia and S.Littig, The Cheeger‐\(N\)‐problem in terms of BV‐functions, J. Convex Anal.26 (2019), no. 1, 33-47. MR3847212. · Zbl 1417.49060
[49] V.Caselles, A.Chambolle, S.Moll, and M.Novaga, A characterization of convex calibrable sets in \(\mathbb{R}^N\) with respect to anisotropic norms, Ann. Inst. H. Poincaré C Anal. Non Linéaire25 (2008), no. 4, 803-832. MR2436794. · Zbl 1144.52002
[50] V.Caselles, G.Facciolo, and E.Meinhardt, Anisotropic Cheeger sets and applications, SIAM J. Imaging Sci.2 (2009), no. 4, 1211-1254. MR2559165. · Zbl 1193.49051
[51] V.Caselles, Jr. M.Miranda, and M.Novaga, Total variation and Cheeger sets in Gauss space, J. Funct. Anal.259 (2010), no. 6, 1491-1516. MR2659769. · Zbl 1195.49054
[52] F.Cavalletti and E.Milman, The globalization theorem for the curvature‐dimension condition, Invent. Math.226 (2021), no. 1, 1-137. MR4309491. · Zbl 1479.53049
[53] F.Cavalletti and A.Mondino, Sharp and rigid isoperimetric inequalities in metricmeasure spaces with lower Ricci curvature bounds, Invent. Math.208 (2017), no. 3, 803-849. MR3648975. · Zbl 1375.53053
[54] F.Cavalletti and A.Mondino, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol.21 (2017), no. 1, 603-645. MR3608721. · Zbl 1357.49028
[55] F.Cavalletti and A.Mondino, Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.29 (2018), no. 3, 413-430. MR3819097. · Zbl 1395.53044
[56] A.Cesaroni, S.Dipierro, M.Novaga, and E.Valdinoci, Minimizers for nonlocal perimeters of Minkowski type, Calc. Var. Partial Differential Equations57 (2018), no. 2, Paper No. 64, 40. MR3775182. · Zbl 1391.49077
[57] A.Cesaroni and M.Novaga, The isoperimetric problem for nonlocal perimeters, Discrete Contin. Dyn. Syst. Ser. S11 (2018), no. 3, 425-440. MR3732175. · Zbl 1379.53013
[58] A.Cesaroni and M.Novaga, Nonlocal minimal clusters in the plane, Nonlinear Anal.199 (2020), 111945, 11. MR4093826. · Zbl 1447.49058
[59] A.Chambolle, A.Giacomini, and L.Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal.44 (2010), no. 2, 207-230. MR2655948. · Zbl 1185.94008
[60] A.Chambolle and P.‐L.Lions, Image recovery via total variation minimization and related problems, Numer. Math.76 (1997), no. 2, 167-188. MR1440119. · Zbl 0874.68299
[61] A.Chambolle, M.Morini, and M.Ponsiglione, A nonlocal mean curvature flow and its semi‐implicit time‐discrete approximation, SIAM J. Math. Anal.44 (2012), no. 6, 4048-4077. MR3023439. · Zbl 1270.35019
[62] J.Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), 1970, pp. 195-199. MR0402831. · Zbl 0212.44903
[63] J.Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal.9 (1999), no. 3, 428-517. MR1708448. · Zbl 0942.58018
[64] E.Cinti, F.Glaudo, A.Pratelli, X.Ros‐Oton, and J.Serra, Sharp quantitative stability for isoperimetric inequalities with homogeneous weights, Trans. Amer. Math. Soc.375 (2022), no. 3, 1509-1550. MR4378069. · Zbl 1483.49053
[65] G. E.Comi and G.Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow‐up, J. Funct. Anal.277 (2019), no. 10, 3373-3435. MR4001075. · Zbl 1437.46039
[66] G. E.Comi and G.Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I, Rev. Mat. Complut.36 (2023), no. 2, 491-569. MR4581759. · Zbl 1532.46027
[67] G. E.Comi and G.Stefani, Failure of the local chain rule for the fractional variation, Port. Math.80 (2023), no. 1-2, 1-25. MR4578331. · Zbl 1547.46034
[68] G.Csató, An isoperimetric problem with density and the Hardy Sobolev inequality in \(\mathbb{R}^2\), Differential Integral Equations28 (2015), no. 9-10, 971-988. MR3360726. · Zbl 1363.49040
[69] G.Csató, On the isoperimetric problem with perimeter density \(r^p\), Commun. Pure Appl. Anal.17 (2018), no. 6, 2729-2749. MR3814396. · Zbl 1398.49038
[70] N.De Ponti and A.Mondino, Sharp Cheeger-Buser type inequalities in \(\mathsf{RCD}(K,\infty)\) spaces, J. Geom. Anal.31 (2021), no. 3, 2416-2438. MR4225812. · Zbl 1475.53040
[71] N.De Ponti, A.Mondino, and D.Semola, The equality case in Cheeger’s and Buser’s inequalities on \(\mathsf{RCD}\) spaces, J. Funct. Anal.281 (2021), no. 3, Paper No. 109022, 36. MR4243707. · Zbl 1462.35013
[72] A.Di Castro, M.Novaga, B.Ruffini, and E.Valdinoci, Nonlocal quantitative isoperimetric inequalities, Calc. Var. Partial Differential Equations54 (2015), no. 3, 2421-2464. MR3412379. · Zbl 1333.49061
[73] V.Duval, J.‐F.Aujol, and Y.Gousseau, The TVL1 model: a geometric point of view, Multiscale Model. Simul.8 (2009), no. 1, 154-189. MR2575049. · Zbl 1187.94010
[74] B.Franchi, P.Hajłasz, and P.Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble)49 (1999), no. 6, 1903-1924. MR1738070. · Zbl 0938.46037
[75] B.Franchi, R.Serapioni, and F.Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math.22 (1996), no. 4, 859-890. MR1437714. · Zbl 0876.49014
[76] N.Garofalo and D.‐M.Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.49 (1996), no. 10, 1081-1144. MR1404326. · Zbl 0880.35032
[77] E.Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math.46 (1978), no. 2, 111-137. MR487722. · Zbl 0381.35035
[78] W.Górny and J. M.Mazón, The Anzellotti-Gauss-Green formula and least gradient functions in metric measure spaces, Commun. Contemp. Math. (2023), Paper No. 2350027, 42 pp. · Zbl 1548.53050
[79] D.Grieser, The first eigenvalue of the Laplacian, isoperimetric constants, and the max flow min cut theorem, Arch. Math. (Basel)87 (2006), no. 1, 75-85. MR2246409. · Zbl 1105.35062
[80] A.Grigor’yan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Maz’ ya anniversary collection, Vol. 1 (Rostock, 1998), 1999, pp. 139-153. MR1747869. · Zbl 0947.58034
[81] M.Gromov, Metric Structures for Riemannian and non‐Riemannian Spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. MR1699320. · Zbl 0953.53002
[82] P.Hajłasz and P.Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc.145 (2000), no. 688, x+101. MR1683160. · Zbl 0954.46022
[83] R. R.Huilgol and G. C.Georgiou, The role of Cheeger sets in the steady flows of viscoplastic fluids in pipes: a survey, Phys. Fluids35 (2023), no. 10, Paper No. 103108.
[84] I. R.Ionescu and T.Lachand‐Robert, Generalized Cheeger sets related to landslides, Calc. Var. Partial Differential Equations23 (2005), no. 2, 227-249. MR2138084. · Zbl 1062.49036
[85] D.Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J.53 (1986), no. 2, 503-523. MR0850547. · Zbl 0614.35066
[86] V.Julin and G.Saracco, Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants, Ann. Fenn. Math.46 (2021), no. 2, 1071-1087. MR4307017. · Zbl 1475.49051
[87] B.Kawohl, On a family of torsional creep problems, J. Reine Angew. Math.410 (1990), 1-22. MR1068797. · Zbl 0701.35015
[88] B.Kawohl and V.Fridman, Isoperimetric estimates for the first eigenvalue of the \(p\)‐Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin.44 (2003), no. 4, 659-667. MR2062882. · Zbl 1105.35029
[89] B.Kawohl and M.Novaga, The \(p\)‐Laplace eigenvalue problem as \(p\rightarrow 1\) and Cheeger sets in a Finsler metric, J. Convex Anal.15 (2008), no. 3, 623-634. MR2431415. · Zbl 1186.35115
[90] J. B.Keller, Plate failure under pressure, SIAM Rev.22 (1980), no. 2, 227-228. · Zbl 0439.73048
[91] G. P.Leonardi, An overview on the Cheeger problem, New trends in shape optimization, Birkhäuser, Cham, 2015, pp. 117-139. MR3467379. · Zbl 1329.49088
[92] G. P.Leonardi, R.Neumayer, and G.Saracco, The Cheeger constant of a Jordan domain without necks, Calc. Var. Partial Differential Equations56 (2017), no. 6, Paper No. 164, 29. MR3719067. · Zbl 1381.49022
[93] G. P.Leonardi and A.Pratelli, On the Cheeger sets in strips and non‐convex domains, Calc. Var. Partial Differential Equations55 (2016), no. 1, Art. 15, 28. MR3451406. · Zbl 1337.49074
[94] G. P.Leonardi and G.Saracco, The prescribed mean curvature equation in weakly regular domains, NoDEA Nonlinear Differential Equations Appl.25 (2018), no. 2, Paper No. 9, 29. MR3767675. · Zbl 1391.49041
[95] G. P.Leonardi and G.Saracco, Minimizers of the prescribed curvature functional in a Jordan domain with no necks, ESAIM Control Optim. Calc. Var.26 (2020), Paper No. 76, 20. MR4156828. · Zbl 1459.49029
[96] Q.Li and M.Torres, Morrey spaces and generalized Cheeger sets, Adv. Calc. Var.12 (2019), no. 2, 111-133. MR3935853. · Zbl 1412.49014
[97] J.Lott and C.Villani, Ricci curvature for metric‐measure spaces via optimal transport, Ann. of Math. (2)169 (2009), no. 3, 903-991. MR2480619. · Zbl 1178.53038
[98] F.Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. An Introduction to Geometric Measure Theory. MR2976521. · Zbl 1255.49074
[99] J. M.Mazón, The Cheeger cut and Cheeger problem in metric graphs, Anal. Math. Phys.12 (2022), no. 5, Paper No. 117, 37. MR4476916. · Zbl 1497.05108
[100] J. M.Mazón, J. D.Rossi, and J.Toledo, Nonlocal perimeter, curvature and minimal surfaces for measurable sets, Frontiers in Mathematics, Birkhäuser/Springer, Cham, 2019. MR3930619. · Zbl 1446.49001
[101] J. M.Mazón, J. D.Rossi, and J.Toledo, Nonlocal perimeter, curvature and minimal surfaces for measurable sets, J. Anal. Math.138 (2019), no. 1, 235-279. MR3996039. · Zbl 1426.49043
[102] V. G.Maz’ya, On the solvability of the Neumann problem, Dokl. Akad. Nauk SSSR147 (1962), 294-296. MR0144058. · Zbl 0178.13701
[103] V. G.Maz’ya, The negative spectrum of the higher‐dimensional Schrödinger operator, Dokl. Akad. Nauk SSSR144 (1962), 721-722. MR0138880.
[104] E.Milman, On the role of convexity in isoperimetry, spectral gap and concentration, Invent. Math.177 (2009), no. 1, 1-43. MR2507637. · Zbl 1181.52008
[105] E.Milman, Sharp isoperimetric inequalities and model spaces for the curvaturedimension‐diameter condition, J. Eur. Math. Soc. (JEMS)17 (2015), no. 5, 1041-1078. MR3346688. · Zbl 1321.53043
[106] E.Milman and J.Neeman, The Gaussian double‐bubble and multi‐bubble conjectures, Ann. of Math. (2)195 (2022), no. 1, 89-206. MR4358414. · Zbl 1484.49072
[107] Jr. M.Miranda, Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9)82 (2003), no. 8, 975-1004. MR2005202. · Zbl 1109.46030
[108] F.Montefalcone, Geometric inequalities in Carnot groups, Pacific J. Math.263 (2013), no. 1, 171-206. MR3069080. · Zbl 1279.53031
[109] A.Nagel, E. M.Stein, and S.Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math.155 (1985), no. 1-2, 103-147. MR0793239. · Zbl 0578.32044
[110] M.Novaga, D.Pallara, and Y.Sire, A fractional isoperimetric problem in the Wiener space, J. Anal. Math.134 (2018), no. 2, 787-800. MR3771500. · Zbl 1408.93151
[111] M.Novaga, E.Paolini, E.Stepanov, and V. M.Tortorelli, Isoperimetric clusters in homogeneous spaces via concentration compactness, J. Geom. Anal.32 (2022), no. 11, Paper No. 263, 23. MR4470300. · Zbl 1496.49023
[112] E.Parini, An introduction to the Cheeger problem, Surv. Math. Appl.6 (2011), 9-21. MR2832554. · Zbl 1399.49023
[113] L. I.Rudin, S.Osher, and E.Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D60 (1992), 259-268. MR3363401. · Zbl 0780.49028
[114] G.Saracco, Weighted Cheeger sets are domains of isoperimetry, Manuscripta Math.156 (2018), no. 3-4, 371-381. MR3811794. · Zbl 1402.46029
[115] G.Saracco and G.Stefani, On the \(N\)‐Cheeger problem for component‐wise increasing norms, forthcoming. · Zbl 07899475
[116] F. S.Cassano and D.Vittone, Graphs of bounded variation, existence and local boundedness of non‐parametric minimal surfaces in Heisenberg groups, Adv. Calc. Var.7 (2014), no. 4, 409-492. MR3276118. · Zbl 1304.49084
[117] G.Strang, Maximal flow through a domain, Math. Program.26 (1983), no. 2, 123-143. MR700642. · Zbl 0513.90026
[118] K.‐T.Sturm, On the geometry of metric measure spaces. I, Acta Math.196 (2006), no. 1, 65-131. MR2237206. · Zbl 1105.53035
[119] K.‐T.Sturm, On the geometry of metric measure spaces. II, Acta Math.196 (2006), no. 1, 133-177. MR2237207. · Zbl 1106.53032
[120] V. N.Sudakov and B. S.Cirel’son, Extremal properties of half‐spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)41 (1974), 14-24, 165. Problems in the theory of probability distributions, II. MR0365680. · Zbl 0351.28015
[121] E.Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math.81 (2013), no. 1, 1-23. MR3046979. · Zbl 1264.35269
[122] A.Visintin, Nonconvex functionals related to multiphase systems, SIAM J. Math. Anal.21 (1990), no. 5, 1281-1304. MR1062405. · Zbl 0723.49006
[123] A.Visintin, Generalized coarea formula and fractal sets, Japan J. Indust. Appl. Math.8 (1991), no. 2, 175-201. MR1111612. · Zbl 0736.49030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.