×

A note on comparison principle for \(p\)-Laplacian evolution type equation. (English) Zbl 1470.35085

Summary: In this paper we provide a comparison principle for the weak solutions \(u(\cdot ,t), v(\cdot ,t)\) of two similar evolution \(p\)-Laplacian equations, both with source terms in a divergent and non-divergent form. Once we treat with signal solutions defined in all space \(\mathbb{R}^n\), for all \(t\) in a maximal existence interval \([0,T_{\ast})\), the arguments presented here differ from the ones used to prove the comparison principle in bounded domains. We suppose \(p \geq n, p>2\) and also consider some additional natural assumptions. The initial conditions \(u(\cdot ,0)\) and \(v(\cdot ,0)\) are supposed to belong to the space \(L^1(\mathbb{R}^n) \cap L^{\infty }(\mathbb{R}^n)\). An useful proposition to prove the comparison principle will be presented and the contraction of the \(L^1\) norm of \(u-v\) for a particular case will be shown.

MSC:

35B51 Comparison principles in context of PDEs
35K15 Initial value problems for second-order parabolic equations
35K59 Quasilinear parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Avelin, B.; Lukkari, T., A comparison principle for the porous medium equation and its consequences, Rev. Mat. Iberoam., 33, 2, 573-594 (2017) · Zbl 1365.35060 · doi:10.4171/RMI/950
[2] Bobkov V.E., Takáč P.: On maximum and comparison principles for parabolic problems with the p-Laplacian. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, vol. 113 (2019). doi:10.1007/s13398-018-0536-6 · Zbl 1416.35056
[3] Chagas, J.Q., Diehl, N.M.L., Guidolin, P.L.: Some properties for the Steklov averages (2017). arXiv:1707.06368
[4] Chagas, JQ; Guidolin, PL; Zingano, PR, Global solvability results for parabolic equations with p-Laplacian type diffused (accepted), J. Math. Anal. Appl., 458, 860-874 (2018) · Zbl 1460.35206 · doi:10.1016/j.jmaa.2017.09.040
[5] Derlet, A.; Takac, P., A quasilinear parabolic model for population evolution, Differ. Equ. Appl., 4, 1, 121-136 (2012) · Zbl 1243.35107
[6] DiBenedetto, E.; Herrero, MA, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Am. Math. Soc., 314, 1, 187-224 (1989) · Zbl 0691.35047 · doi:10.1090/S0002-9947-1989-0962278-5
[7] DiBenedetto, E., Herrero, M.A.: Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy Problem when \(1< p < 2\). Arch. Ration. Mech. Anal. 111(3), 225-290 (1990) · Zbl 0726.35066
[8] DiBenedetto, E., Degenerate Parabolic Equations (1993), New York: Springer, New York · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[9] DiBenedetto, E., Gianazza, U..P., Vespri, V.: Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Science & Business Media (2011) · Zbl 1237.35004
[10] Kalashnikov, AS, Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations, Russ. Math. Surv., 42, 169-222 (1987) · Zbl 0642.35047 · doi:10.1070/RM1987v042n02ABEH001309
[11] Lions, JL, Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod, Paris · Zbl 0189.40603
[12] Padial, J.F., Takac, P., Tello, L.: An antimaximum principle for a degenerate parabolic problem. Adv. Differ. Equ. 15(7-8), 601-648 (2010). http://projecteuclid.org/euclid.ade/1355854621 · Zbl 1195.35237
[13] Roselli, P.; Sciunzi, B., A strong comparison principle for the p-Laplacian, Proc. Am. Math. Soc., 135, 3217-3224 (2007) · Zbl 1221.35173 · doi:10.1090/S0002-9939-07-08847-8
[14] Urbano, JM, The Method of Intrinsic Scaling, Lecture Notes in Mathematics (2008), New York: Springer, New York · Zbl 1158.35003 · doi:10.1007/978-3-540-75932-4
[15] Wu, Z.; Zhao, J.; Yin, J.; Li, H., Nonlinear Diffusion Equations (2001), Hong Kong: World Scientific, Hong Kong · Zbl 0997.35001 · doi:10.1142/4782
[16] Zhao, J., Existence and nonexistence of solutions for \(u_t = \text{div}(|\nabla u |^{p-2} \nabla u )+ f( \nabla u, u, x, t)\), J. Math. Anal. Appl., 172, 130-146 (1993) · Zbl 0799.35130 · doi:10.1006/jmaa.1993.1012
[17] Zhou, S., A priori \(L^{\infty }\!\,\!\)-estimate and existence of solutions for some nonlinear parabolic equations, Nonlinear Anal., 42, 887-904 (2000) · Zbl 0957.35028 · doi:10.1016/S0362-546X(99)00135-2
[18] Ziebell, J..S., Schütz, Guidolin, P..L.: Some fundamental a priori estimates for weak solutions of the evolution p-Laplacian equation. Appl. Anal. 99, 2793-2806 (2020) · Zbl 1454.35039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.