×

Pseudo-orthogonality for graph 1-Laplacian eigenvectors and applications to higher Cheeger constants and data clustering. (English) Zbl 1507.68282

Summary: The data clustering problem consists in dividing a data set into prescribed groups of homogeneous data. This is an NP-hard problem that can be relaxed in the spectral graph theory, where the optimal cuts of a graph are related to the eigenvalues of graph 1-Laplacian. In this paper, we first give new notations to describe the paths, among critical eigenvectors of the graph 1-Laplacian, realizing sets with prescribed genus. We introduce the pseudo-orthogonality to characterize \(m_3(G)\), a special eigenvalue for the graph 1-Laplacian. Furthermore, we use it to give an upper bound for the third graph Cheeger constant \(h_3(G)\), that is, \(h_3(G) \leqslant m_3(G)\). This is a first step for proving that the \(k\)-th Cheeger constant is the minimum of the 1-Laplacian Raylegh quotient among vectors that are pseudo-orthogonal to the vectors realizing the previous \(k-1\) Cheeger constants. Eventually, we apply these results to give a method and a numerical algorithm to compute \(m_3 (G)\), based on a generalized inverse power method.

MSC:

68T09 Computational aspects of data analysis and big data
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)

References:

[1] Amghibech, S., Eigenvalues of the discrete p-Laplacian for graphs, Ars Combin, 67, 283-302 (2003) · Zbl 1080.31005
[2] Belloni, M.; Ferone, V.; Kawohl, B., Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Special issue dedicated to Lawrence E. Payne, Z Angew Math Phys, 54, 5, 771-783 (2003) · Zbl 1099.35509 · doi:10.1007/s00033-003-3209-y
[3] Belloni, M.; Kawohl, B.; Juutinen, P., The p-Laplace eigenvalue problem as p → ∞ in a Finsler metric, J Eur Math Soc (JEMS), 8, 1, 123-138 (2006) · Zbl 1245.35078 · doi:10.4171/JEMS/40
[4] Bobkov, V.; Parini, E., On the higher Cheeger problem, J Lond Math Soc (2), 97, 3, 575-600 (2018) · Zbl 1394.49041 · doi:10.1112/jlms.12119
[5] Bühler T, Hein M. Spectral clustering based on the graph p-Laplacian. In: Bottou L, Littman M, eds. Proceedings of the 26th International Conference on Machine Learning (ICML 2009). 2009, 81-88
[6] Bühler, T.; Hein, M., An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA, Adv Neural Inform Process Syst, 23, 847-855 (2010)
[7] Caroccia M. Cheeger N-clusters. Calc Var Partial Differential Equations, 2017, 56 (2): Art 30 (35 pp) · Zbl 1366.49052
[8] Chang, K. C., Spectrum of the 1-Laplacian and Cheeger’s constant on graphs, J Graph Theory, 81, 2, 167-207 (2016) · Zbl 1336.05084 · doi:10.1002/jgt.21871
[9] Chang, K. C.; Shao, S.; Zhang, D., The 1-Laplacian Cheeger cut: theory and algorithms, J Comput Math, 33, 5, 443-467 (2015) · Zbl 1349.05203 · doi:10.4208/jcm.1506-m2014-0164
[10] Chang, K. C.; Shao, S.; Zhang, D., Nodal domains of eigenvectors for 1-Laplacian on graphs, Adv Math, 308, 529-574 (2017) · Zbl 1366.35204 · doi:10.1016/j.aim.2016.12.020
[11] Chang, K. C.; Shao, S.; Zhang, D.; Zhang, W., Nonsmooth critical point theory and applications to the spectral graph theory, Sci China Math, 64, 1, 1-32 (2021) · Zbl 1462.58008 · doi:10.1007/s11425-019-1625-8
[12] Cheeger, J.; Gunning, R. C., A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis: A Symposium in Honor of Salomon Bochner, 195-199 (1970), Princeton: Princeton Univ Press, Princeton · Zbl 0212.44903
[13] Chung, F. R K., Spectral Graph Theory (1997), Providence: Amer Math Soc, Providence · Zbl 0867.05046
[14] Cuesta, M., Minimax theorems on C^1 manifolds via Ekeland variational principle, Abstr Appl Anal, 2003, 13, 757-768 (2003) · Zbl 1072.58004 · doi:10.1155/S1085337503303100
[15] Davies, E. B.; Leydold, J.; Stadler, P. F., Discrete nodal domain theorems, Linear Algebra Appl, 336, 1, 51-60 (2001) · Zbl 0990.05093
[16] Della Pietra, F.; Gavitone, N.; Piscitelli, G., A sharp weighted anisotropic Poincaré inequality for convex domains, C R Math Acad Sci Paris, 355, 7, 748-752 (2017) · Zbl 1373.49010 · doi:10.1016/j.crma.2017.06.005
[17] Della Pietra, F.; Gavitone, N.; Piscitelli, G., On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators, Bull Sci Math, 155, 10-32 (2019) · Zbl 1421.35232 · doi:10.1016/j.bulsci.2019.02.005
[18] Della Pietra, F.; Piscitelli, G., Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems, Atti Accad Naz Lincei Rend Lincei Mat Appl, 30, 1, 131-150 (2020) · Zbl 1439.49082 · doi:10.4171/RLM/883
[19] Drábek, P.; Robinson, S., Resonance problems for the p-Laplacian, J Funct Anal, 169, 1, 189-200 (1999) · Zbl 0940.35087 · doi:10.1006/jfan.1999.3501
[20] Esposito, L.; Kawohl, B.; Nitsch, C.; Trombetti, C., The Neumann eigenvalue problem for the ∞-Laplacian, Atti Accad Naz Lincei Rend Lincei Mat Appl, 26, 119-134 (2015) · Zbl 1321.35120 · doi:10.4171/RLM/697
[21] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., The ∞-eigenvalue problem, Arch Rational Mech Anal, 148, 89-105 (1999) · Zbl 0947.35104 · doi:10.1007/s002050050157
[22] Kawohl, B.; Fridman, V., Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment Math Univ Carolin, 44, 4, 659-667 (2003) · Zbl 1105.35029
[23] Kawohl, B.; Novaga, M., The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric, J Convex Anal, 15, 3, 623-634 (2008) · Zbl 1186.35115
[24] Lee, J. R.; Gharan, S. O.; Trevisan, L., Multiway spectral partitioning and higher-order Cheeger inequalities, J ACM, 61, 6, 37 (2014) · Zbl 1321.05151 · doi:10.1145/2665063
[25] Littig, S.; Schuricht, F., Convergence of the eigenvalues of the p-Laplace operator as p goes to 1, Calc Var Partial Differential Equations, 49, 707-727 (2014) · Zbl 1282.35267 · doi:10.1007/s00526-013-0597-5
[26] von Luxburg, U., A tutorial on spectral clustering, Stat Comput, 17, 4, 395-416 (2007) · doi:10.1007/s11222-007-9033-z
[27] Parini, E., An introduction to the Cheeger problem, Surv Math Appl, 6, 9-21 (2011) · Zbl 1399.49023
[28] Piscitelli, G., A nonlocal anisotropic eigenvalue problem, Differential Integral Equations, 29, 11-12, 1001-1020 (2016) · Zbl 1374.35271
[29] Piscitelli, G., The anisotropic ∞-Laplacian eigenvalue problem with Neumann boundary conditions, Differential Integral Equations, 32, 11-12, 705-734 (2019) · Zbl 1449.35335
[30] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations (1986), Providence: Amer Math Soc, Providence · Zbl 0609.58002
[31] Tudisco, F.; Hein, M., A nodal domain theorem and a higher-order Cheeger inequality for the graph p-Laplacian, J Spectr Theory, 8, 3, 883-908 (2018) · Zbl 1491.05126 · doi:10.4171/JST/216
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.