×

Multiple solutions for asymptotically \(q\)-linear \((p, q)\)-Laplacian problems. (English) Zbl 1529.35262

Math. Methods Appl. Sci. 45, No. 14, 8655-8673 (2022); corrigendum ibid. 47, No. 4, 2500-2502 (2024).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations

References:

[1] MarcelliniP. Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch Rational Mech Anal. 1989;105(3):267‐284. https://doi.org/10.1007/BF00251503 · Zbl 0667.49032 · doi:10.1007/BF00251503
[2] MarcelliniP. Regularity and existence of solutions of elliptic equations with p, q‐growth conditions. J Differential Equations. 1991;90(1):1‐30. https://doi.org/10.1016/0022‐0396(91)90158‐6 · Zbl 0724.35043 · doi:10.1016/0022‐0396(91)90158‐6
[3] DieningL, HarjulehtoP, HastoP, RuzickaM. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017: Springer; 2011. https://doi.org/10.1007/978‐3‐642‐18363‐8 · Zbl 1222.46002 · doi:10.1007/978‐3‐642‐18363‐8
[4] BaroniP, ColomboM, MingioneG. Regularity for general functionals with double phase. Calc Var Partial Differential Equations. 2018;57(2):1‐48. https://doi.org/10.1007/s00526‐018‐1332‐z · Zbl 1394.49034 · doi:10.1007/s00526‐018‐1332‐z
[5] ColomboM, MingioneG. Regularity for double phase variational problems. Arch Ration Mech Anal. 2015;215(2):443‐496. https://doi.org/10.1007/s00205‐014‐0785‐2 · Zbl 1322.49065 · doi:10.1007/s00205‐014‐0785‐2
[6] ZhikovVV. Averaging of functionals of the calculus of variations and elasticity theory. Izv Akad Nauk SSSR Ser Mat. 1986;50(4):675‐710, 877. · Zbl 0599.49031
[7] ColasuonnoF, SquassinaM. Eigenvalues for double phase variational integrals. Ann Mat Pura Appl. 2016;195(6):1917‐1959.https://doi.org/10.1007/s10231‐015‐0542‐7 · Zbl 1364.35226 · doi:10.1007/s10231‐015‐0542‐7
[8] BonheureD, ColasuonnoF, FöldesJ. On the Born‐Infeld equation for electrostatic fields with a superposition of point charges. Ann Mat Pura Appl. 2019;198(3):749‐772. https://doi.org/10.1007/s10231‐018‐0796‐y · Zbl 1420.35395 · doi:10.1007/s10231‐018‐0796‐y
[9] BonheureD, d’AveniaP, PomponioA. On the electrostatic Born‐Infeld equation with extended charges. Comm Math Phys. 2016;346(3):877‐906. https://doi.org/10.1007/s00220‐016‐2586‐y · Zbl 1365.35170 · doi:10.1007/s00220‐016‐2586‐y
[10] FortunatoD, OrsinaL, PisaniL. Born‐Infeld type equations for electrostatic fields. J Math Phys. 2002;43(11):5698‐5706. https://doi.org/10.1063/1.1508433 · Zbl 1060.78004 · doi:10.1063/1.1508433
[11] LiG, ZhouH‐S. Multiple solutions to p‐Laplacian problems with asymptotic nonlinearity as u^p − 1 at infinity. J London Math Soc. 2002;65(1):123‐138. https://doi.org/10.1112/S0024610701002708 · Zbl 1171.35384 · doi:10.1112/S0024610701002708
[12] PereraK, SquassinaM. Existence results for double‐phase problems via Morse theory. Commun Contemp Math. 2018;20(2):1750023, 14. https://doi.org/10.1142/S0219199717500237 · Zbl 1379.35152 · doi:10.1142/S0219199717500237
[13] BartoloR, CandelaAM, SalvatoreA. On a class of superlinear (p, q)‐Laplacian type equations on \(\mathbb{R}^N\). J Math Anal Appl. 2016;438(1):29‐41. https://doi.org/10.1016/j.jmaa.2016.01.049 · Zbl 1334.35039 · doi:10.1016/j.jmaa.2016.01.049
[14] BartoloR, CandelaAM, SalvatoreA. p‐Laplacian problems with nonlinearities interacting with the spectrum. NoDEA Nonlin Differential Equations Appl. 2013;20(5):1701‐1721. https://doi.org/10.1007/s00030‐013‐0226‐1 · Zbl 1280.35059 · doi:10.1007/s00030‐013‐0226‐1
[15] BartoloP, BenciV, FortunatoD. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 1983;7(9):981‐1012. https://doi.org/10.1016/0362‐546X(83)90115‐3 · Zbl 0522.58012 · doi:10.1016/0362‐546X(83)90115‐3
[16] BobkovV, TanakaM. On positive solutions for (p, q)‐Laplace equations with two parameters. Calc Var Partial Differential Equations. 2015;54(3):3277‐3301. https://doi.org/10.1007/s00526‐015‐0903‐5 · Zbl 1328.35052 · doi:10.1007/s00526‐015‐0903‐5
[17] BobkovV, TanakaM. Remarks on minimizers for (p, q)‐Laplace equations with two parameters. Commun Pure Appl Anal. 2018;17(3):1219‐1253. https://doi.org/10.3934/cpaa.2018059 · Zbl 1400.35145 · doi:10.3934/cpaa.2018059
[18] MaranoSA, MosconiSJN. Some recent results on the Dirichlet problem for (p, q)‐Laplace equations. Discrete Contin Dyn Syst Ser S. 2018;11(2):279‐291. https://doi.org/10.3934/dcdss.2018015 · Zbl 1374.35137 · doi:10.3934/dcdss.2018015
[19] CandelaAM, PalmieriG. Infinitely many solutions of some nonlinear variational equations. Calc Var Partial Differential Equations. 2009;34(4):495‐530. https://doi.org/10.1007/s00526‐008‐0193‐2 · Zbl 1160.49007 · doi:10.1007/s00526‐008‐0193‐2
[20] ColasuonnoF, PucciP. Multiplicity of solutions for p (x)‐polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 2011;74(17):5962‐5974. https://doi‐org.ezproxy.unibo.it/10.1016/j.na.2011.05.073 · Zbl 1232.35052 · doi:10.1016/j.na.2011.05.073
[21] DincaG, JebeleanP, MawhinJ. Variational and topological methods for Dirichlet problems with p‐Laplacian. Port Math (NS). 2001;58(3):339‐378. · Zbl 0991.35023
[22] ColasuonnoF, PucciP, VargaC. Multiple solutions for an eigenvalue problem involving p‐Laplacian type operators. Nonlinear Anal. 2012;75(12):4496‐4512. https://doi‐org.ezproxy.unibo.it/10.1016/j.na.2011.09.048 · Zbl 1251.35059 · doi:10.1016/j.na.2011.09.048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.