Bobkov, Vladimir; Parini, Enea On the Cheeger problem for rotationally invariant domains. (English) Zbl 1477.49063 Manuscr. Math. 166, No. 3-4, 503-522 (2021). Summary: We investigate the properties of the Cheeger sets of rotationally invariant, bounded domains \(\Omega \subset \mathbb{R}^n\). For a rotationally invariant Cheeger set \(C\), the free boundary \(\partial C \cap \Omega\) consists of pieces of Delaunay surfaces, which are rotationally invariant surfaces of constant mean curvature. We show that if \(\Omega\) is convex, then the free boundary of \(C\) consists only of pieces of spheres and nodoids. This result remains valid for nonconvex domains when the generating curve of \(C\) is closed, convex, and of class \(\mathcal{C}^{1,1} \). Moreover, we provide numerical evidence of the fact that, for general nonconvex domains, pieces of unduloids or cylinders can also appear in the free boundary of \(C\). Cited in 4 Documents MSC: 49Q15 Geometric measure and integration theory, integral and normal currents in optimization 49Q10 Optimization of shapes other than minimal surfaces 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature 49Q20 Variational problems in a geometric measure-theoretic setting × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alter, F.; Caselles, V., Uniqueness of the Cheeger set of a convex body, Nonlinear Anal., 70, 1, 32-44 (2009) · Zbl 1167.52005 · doi:10.1016/j.na.2007.11.032 [2] Alter, F.; Caselles, V.; Chambolle, A., A characterization of convex calibrable sets in \(\mathbb{R}^N\), Math. Ann., 332, 2, 329-366 (2005) · Zbl 1108.35073 · doi:10.1007/s00208-004-0628-9 [3] Aberra, D.; Agrawal, K., Surfaces of revolution in \(n\) dimensions, Int. J. Math. Ed. Sci. Technol., 38, 6, 843-851 (2007) · doi:10.1080/00207390701359388 [4] Bellettini, G.; Caselles, V.; Novaga, M., Explicit solutions of the eigenvalue problem \(-\text{div}(Du/|Du|)=u\) in \(R^2\), SIAM J. Math. Anal., 36, 4, 1095-1129 (2005) · Zbl 1162.35379 · doi:10.1137/S0036141003430007 [5] Bobkov, V.; Parini, E., On the higher Cheeger problem, J. Lond. Math. Soc. (2), 97, 3, 575-600 (2018) · Zbl 1394.49041 · doi:10.1112/jlms.12119 [6] Caselles, V.; Chambolle, A.; Novaga, M., Some remarks on uniqueness and regularity of Cheeger sets, Rend. Semin. Mat. Univ. Padova, 123, 191-201 (2010) · Zbl 1198.49042 · doi:10.4171/RSMUP/123-9 [7] Dalphin, J.; Henrot, A.; Masnou, S.; Takahashi, T., On the minimization of total mean curvature, J. Geom. Anal., 26, 4, 2729-2750 (2016) · Zbl 1354.52010 · doi:10.1007/s12220-015-9646-y [8] Demengel, F., Functions locally almost \(1\)-harmonic, Appl. Anal., 83, 9, 865-896 (2004) · Zbl 1135.35333 · doi:10.1080/00036810310001621369 [9] Gonzalez, E., Massari, U., Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32(1), 25-37 (1983). https://www.jstor.org/stable/24893183 · Zbl 0486.49024 [10] Hsiang, WY; Yu, WC, A generalization of a theorem of Delaunay, J. Differ. Geom., 16, 2, 161-177 (1981) · Zbl 0504.53044 · doi:10.4310/jdg/1214436094 [11] Hutchings, M.; Morgan, F.; Ritoré, M.; Ros, A., Proof of the double bubble conjecture, Ann. Math. (2), 155, 2, 459-489 (2002) · Zbl 1009.53007 · doi:10.2307/3062123 [12] Ionescu, IR; Lachand-Robert, T., Generalized Cheeger sets related to landslides, Calc. Var. Part. Differ. Equ., 23, 2, 227-249 (2005) · Zbl 1062.49036 · doi:10.1007/s00526-004-0300-y [13] Kawohl, B., Two dimensions are easier, Arch. Math. (Basel), 107, 4, 423-428 (2016) · Zbl 1352.49047 · doi:10.1007/s00013-016-0953-8 [14] Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44(4), 659-667 (2003), http://dml.cz/dmlcz/119420 · Zbl 1105.35029 [15] Kawohl, B.; Lachand-Robert, T., Characterization of Cheeger sets for convex subsets of the plane, Pac. J. Math., 225, 1, 103-118 (2006) · Zbl 1133.52002 · doi:10.2140/pjm.2006.225.103 [16] Kenmotsu, K., Surfaces of revolution with prescribed mean curvature, Tôhoku Math. J., 32, 1, 147-153 (1980) · Zbl 0431.53005 · doi:10.2748/tmj/1178229688 [17] Krejčiřík, D.; Leonardi, GP; Vlachopulos, P., The Cheeger constant of curved tubes, Arch. Math. (Basel), 112, 4, 429-436 (2019) · Zbl 1415.49027 · doi:10.1007/s00013-018-1282-x [18] Krejčiřík, D.; Pratelli, A., The Cheeger constant of curved strips, Pac. J. Math., 254, 2, 309-333 (2011) · Zbl 1247.28003 · doi:10.2140/pjm.2011.254.309 [19] Leonardi, G.P.: An overview on the Cheeger problem. New trends in shape optimization, pp. 117-139, Internat. Ser. Numer. Math., vol. 166, Birkhäuser/Springer, Cham (2015). doi:10.1007/978-3-319-17563-8_6 · Zbl 1329.49088 [20] Leonardi, G.P., Pratelli, A.: On the Cheeger sets in strips and non-convex domains. Calc. Var. Part. Differ. Equ. 55, no. 1, Art. 15 (2016). doi:10.1007/s00526-016-0953-3 · Zbl 1337.49074 [21] Leonardi, G.P., Neumayer, R., Saracco, G.: The Cheeger constant of a Jordan domain without necks. Calc. Var. Part. Differ. Equ. 56(6), Art. 164 (2017). doi:10.1007/s00526-017-1263-0 · Zbl 1381.49022 [22] Maderna, C.; Salsa, S., Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions, Appl. Anal., 12, 4, 307-321 (1981) · Zbl 0445.35016 · doi:10.1080/00036818108839370 [23] Maggi, F.: Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012). doi:10.1017/CBO9781139108133 · Zbl 1255.49074 [24] Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9-21 (2011). http://www.emis.ams.org/journals/SMA/v06/p02.pdf · Zbl 1399.49023 [25] Rosales, C.: Isoperimetric regions in rotationally symmetric convex bodies. Indiana Univ. Math. J. 52(5), 1201-1214 (2003). https://www.jstor.org/stable/24903444 · Zbl 1088.53039 [26] Stredulinsky, E.; Ziemer, W., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal., 7, 4, 653-677 (1997) · Zbl 0940.49025 · doi:10.1007/BF02921639 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.