×

Lattice triangulations of \(\mathbb{E}^3 \) and of the 3-torus. (English) Zbl 1258.52009

This paper concerns a few questions on tilings of Euclidean spaces and the 3-dimensional torus. The tiles here are topological simplices with curvilinear edges. The authors investigate lattice triangulations of Euclidean 3-space whose vertices form a lattice of rank 3 and such that these triangulations are invariant under all lattice translations. The tiles are not assumed to be Euclidean polyhedra but only topological polyhedra. In 3-space there is a unique standard lattice triangulation with straight edges by Euclidean tetrahedra and there are infinitely many non-standard lattice triangulations where the tetrahedra have certain curvilinear edges. This implies that there are triangulations of 3-space which do not carry any flat discrete metric equivariant under the lattice.
Furthermore, the authors investigate lattice triangulations of the 3-dimensional torus as quotients by a sublattice. The standard triangulation admits such quotients with any number \(n \geq 15\) of vertices. The unique one is of 15 vertices pairwise connected by an edge. It turns out that for any odd \(n \geq 17\) there is an \(n\)-vertex triangulation with pairwise connected vertices of the 3-torus as a quotient of a certain non-standard lattice triangulation. Combinatorially, one can obtain these neighborly 3-tori as slight modifications of the boundary complexes of the cyclic 4-polytopes.

MSC:

52B70 Polyhedral manifolds
51M20 Polyhedra and polytopes; regular figures, division of spaces
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. D. Alexandrov, Konvexe Polyheder, Akademie-Verlag, Berlin, 1958.
[2] A. Altshuler, 3-pseudomanifolds with preassigned links, Transactions of the American Mathematical Society 241 (1978), 213–237. · Zbl 0395.57007
[3] B. Bagchi and B. Datta, Uniqueness of Walkup’s 9-vertex 3-dimensional Klein bottle, Discrete Mathematics 308 (2008), 5087–5095. · Zbl 1164.57009 · doi:10.1016/j.disc.2007.09.030
[4] T. F. Banchoff and W. Kühnel, Equilibrium triangulations of the complex projective plane, Geometriae Dedicata 44 (1992), 313–333. · Zbl 0769.52013 · doi:10.1007/BF00181398
[5] J. Böhm, Some remarks on triangulating a d-cube, Beiträge zur Algebra und Geometrie 29 (1989), 195–218; Addendum, ibid. 30 (1990), 167–168. · Zbl 0705.52002
[6] U. Brehm, Lattice triangulations of 3-space and the 3-torus, Oberwolfach Reports 6 (2009), 111–112.
[7] U. Brehm and W. Kühnel, Equivelar maps on the torus, European Journal of Combinatorics 29 (2008), 1843–1861. · Zbl 1160.52010 · doi:10.1016/j.ejc.2008.01.010
[8] M. Casella and W. Kühnel, A triangulated K3 surface with the minimum number of vertices, Topology 40 (2001), 753–772. · Zbl 0981.57011 · doi:10.1016/S0040-9383(99)00082-8
[9] G. Dartois and A. Grigis, Separating maps of the lattice E 8 and triangulations of the eight-dimensional torus, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 23 (2000), 555–567. · Zbl 0983.57016
[10] O. Delgado Friedrichs and D. H. Huson, Tiling space by platonic solids, I, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 21 (1999), 299–315. · Zbl 0927.52031
[11] O. Delgado Friedrichs and D. H. Huson, 4-regular vertex-transitive tilings of E 3, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 24 (2000), 279–392. · Zbl 0961.52006
[12] A. Dress, D. H. Huson and E. Molnár, The classification of face-transitive periodic threedimensional tilings, Acta Crystallographica. Section A 49 (1993), 806–817. · Zbl 1176.52009
[13] P. Engel and V. Grishukhin, There are exactly 222 L-types of primitive five-dimensional lattices, European Journal of Combinatorics 23 (2002), 275–279. · Zbl 1017.52006 · doi:10.1006/eujc.2001.0551
[14] D. Eppstein, J. M. Sullivan and A. Üngör, Tiling space and slabs with acute tetrahedra, Computational Geometry. Theory and Applications 27 (2004), 237–255. · Zbl 1054.65020 · doi:10.1016/j.comgeo.2003.11.003
[15] A. Grigis, Triangulation du tore de dimension 4, Geometriae Dedicata 69 (1998), 121–139. · Zbl 0898.52005 · doi:10.1023/A:1005097224507
[16] A. Grigis, Triangulation de Delaunay et triangulation des tores, Geometriae Dedicata 143 (2009), 81–88. · Zbl 1187.57023 · doi:10.1007/s10711-009-9374-1
[17] P. Gruber, Convex and Discrete Geometry, Springer, Berlin, 2007. · Zbl 1139.52001
[18] B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, London, 1987.
[19] H. Heesch, Über Raumteilungen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1 (1934), 35–42. · Zbl 0009.32801
[20] J. Hempel, Free cyclic actions on S 1{\(\times\)}S 1{\(\times\)}S 1, Proceedings of the American Mathematical Society 48 (1975), 221–227. · Zbl 0321.57028
[21] Lord Kelvin, On homogeneous division of space, Proceedings of the Royal Society of London 55 (1894), 1–9. · JFM 25.0880.02 · doi:10.1098/rspl.1894.0002
[22] W. Kühnel, Minimal triangulations of Kummer varieties, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 57 (1987), 7–20. · Zbl 0637.52007 · doi:10.1007/BF02941594
[23] W. Kühnel, Triangulations of manifolds with few vertices, in Advances in Differential Geometry and Topology (F. Tricerri, ed.), Proceedings of a Workshop at the Institute for Scientific Interchange (Torino, Italy), World Scientific, Singapore, 1990, pp. 59–114. · Zbl 0836.57002
[24] W. Kühnel, Lattice triangulations of 3-space, and PL curvature, Oberwolfach Reports 6 (2009), 113–115.
[25] W. Kühnel and G. Lassmann, The rhombidodecahedral tessellation of 3-space and a particular 15-vertex triangulation of the 3-dimensional torus, Manuscripta Mathematica 49 (1984), 51–77. · Zbl 0556.57016 · doi:10.1007/BF01174871
[26] W. Kühnel and G. Lassmann, Neighborly combinatorial 3-manifolds with dihedral automorphism group, Israel Journal of Mathematics 52 (1985), 147–166. · Zbl 0573.52010 · doi:10.1007/BF02776088
[27] W. Kühnel and G. Lassmann, Combinatorial d-tori with a large symmetry group, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 3 (1988), 169–176. · Zbl 0634.52008
[28] W. Kühnel and G. Lassmann, Permuted difference cycles and triangulated sphere bundles, Discrete Mathematics 162 (1996), 215–227. · Zbl 0866.52011 · doi:10.1016/0012-365X(95)00287-7
[29] F. H. Lutz, Triangulated manifolds with few vertices and vertex-transitive group actions, Dissertation, TU Berlin, 1999; Shaker, Aachen, 1999. · Zbl 0977.57030
[30] F. H. Lutz, Triangulated Manifolds with Few Vertices, Springer, Berlin, to appear. · Zbl 0977.57030
[31] F. H. Lutz, T. Sulanke and E. Swartz, f-vectors of 3-manifolds, Electronic Journal of Combinatorics 16 (2009), Research Paper R13, 33 pp. · Zbl 1171.57024
[32] P. S. Mara, Triangulations for the cube, Journal of Combinatorial Theory. Series A 20 (1976), 170–177. · Zbl 0341.50001 · doi:10.1016/0097-3165(76)90014-5
[33] P. McMullen and E. Schulte, Abstract Regular Polytopes, Cambridge University Press, 2002. · Zbl 1039.52011
[34] E. Schulte, Tilings, in Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 899–932.
[35] J. M. Sullivan, Curvatures of smooth and discrete surfaces, in Discrete Differential Geometry, Oberwolfach Seminars 38, Birkhäuser, Basel, 2008, pp. 175–188. · Zbl 1151.53007
[36] M. G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques – Deuxième Mémoire. Recherches sur les parallélloèdres primitifs, Journal für die Reine und Angewandte Mathematik 134 (1908), 198–287; ibid. 136 (1909), 67–181.
[37] D. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Mathematica 125 (1970), 75–107. · Zbl 0204.56301 · doi:10.1007/BF02392331
[38] E. Zamorzaeva, On tile-k-transitive tilings of the space, Geometriae Dedicata 59 (1996), 127–135. · Zbl 0846.52008 · doi:10.1007/BF00155724
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.