×

WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part II: The parallel algorithm. (English) Zbl 1349.76637

Summary: The Wavelet Adaptive Multiresolution Representation (WAMR) algorithm is parallelized using a domain decomposition approach suitable to a wide range of distributed-memory parallel architectures. The method is applied to the solution of two unsteady, compressible, reactive flow problems and includes detailed diffusive transport and chemical kinetics models. The first problem is a cellular detonation in a hydrogen-oxygen-argon mixture. The second problem corresponds to the ignition and combustion of a hydrogen bubble by a shock wave in air. In both cases, results agree favorably with previous computational results.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76V05 Reaction effects in flows
80A25 Combustion
76L05 Shock waves and blast waves in fluid mechanics
65Y05 Parallel numerical computation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oran, E. S.; Boris, J. P., Numerical Simulation of Reactive Flow (1987), Elsevier · Zbl 0875.76678
[2] (Gardiner, J. W.C., Combustion Chemistry (1984), Springer-Verlag: Springer-Verlag New York)
[3] Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K., A comprehensive modeling study of iso-octane oxidation, Combust. Flame, 253-280 (2002)
[4] Gamezo, V. N.; Desbordes, D.; Oran, E. S., Two-dimensional reactive flow dynamics in cellular detonation waves, Shock Waves, 9, 11-17 (1999)
[5] Ma, F.; Choi, J.; Yang, V., Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines, J. Propuls. Power, 21, 512-526 (2005)
[6] He, X.; Karagozian, A. R., Numerical simulation of pulse detonation engine phenomena, J. Sci. Comput., 19, 201-224 (2003) · Zbl 1081.76574
[7] Gamezo, V. N.; Ogawa, T.; Oran, E. S., Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture, Proc. Combust. Inst., 31, 2463-2471 (2007)
[8] Cael, G.; Ng, H. D.; Bates, K. R.; Nikiforakis, N.; Short, M., Numerical simulation of detonation structures using a thermodynamically consistent and fully conservative reactive flow model for multi-component computations, Proc. R. Soc. A, 465, 2135-2153 (2009) · Zbl 1186.80022
[9] Sichel, M.; Tonello, N. A.; Oran, E. S.; Jones, D. A., A two-step kinetics model for numerical simulation of explosions and detonations in \(H_2-O_2\) mixtures, Proc. R. Soc. Lond. A, 458, 49-82 (2002) · Zbl 1002.80017
[10] Clifford, L. J.; Milna, A. M.; Turanyi, T.; Boulton, D., An induction parameter model for shock-induced hydrogen combustion simulations, Combust. Flame, 113, 106-118 (1998)
[11] Liang, Z.; Bauwens, L., Detonation structure with pressure-dependent chain-branching kinetics, Proc. Combust. Inst., 30, 1879-1887 (2005)
[12] Fan, H. Y.; Lu, F. K., Comparison of detonation processes in a variable cross section chamber and a simple tube, J. Propuls. Power, 21, 65-75 (2005)
[13] (Valorani, M.; Goussis, D.; Najm, H.; Adrover, A., 1st International Workshop on Model Reduction in Reactive Flows. 1st International Workshop on Model Reduction in Reactive Flows, Rome, Italy (3-5 September, 2007)), 3-5
[14] (Giona, M.; Goussis, D.; Najm, H.; Paolucci, S.; Powers, J.; Sommese, A.; Valorani, M., 2nd International Workshop on Model Reduction in Reactive Flows. 2nd International Workshop on Model Reduction in Reactive Flows, Notre Dame, IN, USA (17-19, Oct. 2009))
[15] (Goussis, D.; Najm, H.; Paolucci, S.; Powers, J.; Valorani, M., 3rd International Workshop on Model Reduction in Reactive Flows. 3rd International Workshop on Model Reduction in Reactive Flows, Corfú, Greece (Apr. 2011)), 27-29
[16] (Goussis, D.; Najm, H.; Paolucci, S.; Powers, J.; Valorani, M., 4th International Workshop on Model Reduction in Reactive Flows. 4th International Workshop on Model Reduction in Reactive Flows, San Francisco, CA, USA (19-21 June, 2013))
[17] Romick, C. M.; Aslam, T. D.; Powers, J. M., The effect of diffusion on the dynamics of unsteady detonations, J. Fluid Mech., 699, 453-464 (2012) · Zbl 1248.76150
[18] Mazaheri, K.; Mahmoudi, Y.; Radulescu, M. I., Diffusion and hydrodynamic instabilities in gaseous detonations, Combust. Flame, 159, 2138-2154 (2012)
[19] Grenga, T.; Paolucci, S.; Valorani, M., Chemical reductions do not necessarily lead to computational reductions, (Proceedings of the 3rd International Workshop on Model Reduction in Reactive Flows. Proceedings of the 3rd International Workshop on Model Reduction in Reactive Flows, San Francisco, CA, USA (2013)), 29-30
[20] Maas, U.; Pope, S., Simplifying chemical kinetics - intrinsic low dimensional manifolds in composition space, Combust. Flame, 88, 239-264 (1992)
[21] Singh, S.; Rastigejev, Y.; Paolucci, S.; Powers, J. M., Viscous detonation in \(H_2-O_2-Ar\) using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation, Combust. Theory Model., 5, 163-184 (2001) · Zbl 1044.76512
[22] Lam, S. H., Using CSP to understand complex chemical kinetics, Combust. Sci. Technol., 89, 375-404 (1993)
[23] Lam, S. H.; Goussis, D. A., The CSP method for simplifying kinetics, Int. J. Chem. Kinet., 26, 461-486 (1994)
[24] Gorban, A. N.; Karlin, I. V., Method of invariant manifold for chemical kinetics, Chem. Eng. Sci., 58, 4751-4768 (2002)
[25] Roussel, M. R.; Fraser, S. J., Geometry of the steady-state approximation: perturbation and accelerated convergence methods, J. Chem. Phys., 93, 1072-1081 (1990)
[26] Roussel, M. R.; Fraser, S. J., On the geometry of transient relaxation, J. Chem. Phys., 94, 7106-7113 (1991)
[27] Adrover, A.; Creta, F.; Giona, M.; Valorani, M., Stretching-based diagnostics and reduction of chemical kinetic models with diffusion, J. Comput. Phys., 225, 1442-1471 (2007) · Zbl 1123.65119
[28] Valorani, M.; Paolucci, S., The G-scheme: a framework for multi-scale adaptive model reduction, J. Comput. Phys., 228, 4665-4701 (2009) · Zbl 1169.65325
[29] Paolucci, S.; Valorani, M.; Grenga, T., G-scheme-based mechanism simplification for hydrogen and hydrocarbon ignition, (Proceedings of the 3rd International Workshop on Model Reduction in Reactive Flows. Proceedings of the 3rd International Workshop on Model Reduction in Reactive Flows, Corfú, Greece (2011)), 327-328
[30] Valorani, M.; Paolucci, S.; Martelli, E.; Grenga, T., A tangential stretching rate index to analyze ignition phenomena, (Proceedings of the 3rd International Workshop on Model Reduction in Reactive Flows. Proceedings of the 3rd International Workshop on Model Reduction in Reactive Flows, San Francisco, CA, USA (2013)), 49-50
[31] Deiterding, R., A generic framework for blockstructured adaptive mesh refinement in object-oriented C++ (2008)
[32] Parashar, M.; Browne, J. C., DAGH: data-management for parallel adaptive mesh-refinement techniques (2008)
[33] Deiterding, R., Detonation structure simulation with AMROC, (Dongarra, J.; Yang, J. T.; Rana, O. F.; Di Martino, B., High Performance Computing and Communications. High Performance Computing and Communications, Lect. Notes Comput. Sci., vol. 3726 (2005), Springer), 916-927
[34] Deiterding, R., Parallel adaptive simulation of multi-dimensional detonation structures (2003), Brandenburg University of Technology: Brandenburg University of Technology Cottbu, Brandenburg, Germany, Ph.D.
[35] MacNeice, P.; Olson, K., PARAMESH V4.1 parallel adaptive mesh refinement (2008)
[36] Timmes, F. X.; Zingale, M.; Olson, K.; Fryxell, B.; Ricker, P.; Calder, A. C.; Dursi, L. J.; Tufo, H.; MacNeice, P.; Truran, J. W.; Rosner, R., On the cellular structure of carbon detonations, Astrophys. J., 543, 938-954 (2000)
[37] MacNeice, P.; Olson, K. M.; Mobarry, C.; Packer, C.; de Fainchtein, R., PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126, 330-354 (2000) · Zbl 0953.65088
[38] Khokhlov, A. M., Fully thread tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143, 519-543 (1998) · Zbl 0934.76057
[39] Gamezo, V. N.; Oran, E. S., Flame acceleration in narrow channels: applications for micropropulsion in low-gravity environments, AIAA J., 44, 329-336 (2006)
[40] Gamezo, V. N.; Khokhlov, A. M.; Oran, E. S., Fine cellular structures produced by marginal detonations, Proc. Combust. Inst., 28, 611-617 (2000)
[41] Gamezo, V. N.; Ogawa, T.; Oran, E. S., Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing, Combust. Flame, 155, 302-315 (2008)
[42] Paolucci, S.; Zikoski, Z.; Wirasaet, D., WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part I. Efficiency and accuracy of algorithm, J. Comput. Phys., 272, 814-841 (2014) · Zbl 1349.76638
[43] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard (1995)
[44] Griebel, M.; Zumbusch, G. W., Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves, Parallel Comput., 25, 827-843 (1999) · Zbl 0945.65138
[45] Griebel, M.; Zumbusch, G., Hash-storage techniques for adaptive multilevel solvers and their domain decomposition parallelization, Contemp. Math., 218, 279-286 (1998) · Zbl 0910.65084
[46] Sagan, H., Space-Filling Curves (1994), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 0806.01019
[47] Aluru, S.; Sevilgen, F. E., Parallel domain decomposition and load balancing using space-filling curves, (Proceedings of the 4th IEEE Conference on High Performance Computing (1997)), 230-235
[48] Wang, Y.; Chen, S.; Amine, A., Novel VLSI implementation of Peano-Hilbert curve address generator, (IEEE International Symposium on Circuits and Systems (2008)), 476-479
[49] Hendrickson, B., Load balancing fictions, falsehoods, and fallacies, Appl. Math. Model., 25, 99-108 (2000) · Zbl 1076.65537
[50] Brown, P. N.; Byrne, G. D.; Hindmarsh, A. C., VODE: a variable coefficient ODE solver, SIAM J. Sci. Stat. Comput., 10, 1038-1051 (1989) · Zbl 0677.65075
[51] Hindmarsh, A. C., Livermore Solver for Ordinary Differential Equations (LSODE) (1979), LLNL
[52] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran: The Art of Scientific Computing (1992), Cambridge University Press · Zbl 0778.65002
[53] Byrne, G. D.; Hindmarsh, A. C., PVODE, An ODE solver for parallel computers (1999), Lawrence Livermore National Laboratory, Technical Report UCRL-JC-132361
[54] Hindmarsh, A. C.; Brown, P. N.; Grant, K. E.; Lee, S. L.; Serban, R.; Shumaker, D. E.; Woodward, C. S., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31, 363-396 (2005) · Zbl 1136.65329
[55] Chapman, D. L., On the rate of explosion in gases, Philos. Mag., 47, 90-104 (1889) · JFM 30.0735.03
[56] Jouguet, E., On explosive waves, C. R. Math. Acad. Sci., 140, 711-712 (1905)
[57] Zel’dovich, Y. B., On the theory of the propagation of detonation in gaseous systems, Zh. Èksp. Teor. Fiz., 10, 542-568 (1940)
[58] von Neumann, J., Theory of detonation waves (1942), Technical Report 549, OSRD
[59] Doering, W., On the detonation process in gases, Ann. Phys., 43, 421-436 (1944)
[60] Lee, J. H.S., The Detonation Phenomenon (2008), Cambridge University Press: Cambridge University Press New York, NY
[61] Strehlow, R. A., Combustion Fundamentals (1984), McGraw-Hill: McGraw-Hill New York
[62] Taki, S.; Fujiwara, T., Numerical analysis of two-dimensional nonsteady detonations, AIAA J., 16, 73-77 (1978)
[63] Sharpe, G. J., Transverse waves in numerical simulations of cellular detonations, J. Fluid Mech., 447, 31-51 (2001) · Zbl 1032.76080
[64] Radulescu, M. I.; Sharpe, G. J.; Law, C. K.; Lee, J. H.S., The hydrodynamic structure of unstable cellular detonations, J. Fluid Mech., 580, 31-81 (2007) · Zbl 1113.76007
[65] He, L.; Clavin, P., On the direct initiation of gaseous detonations by an energy source, J. Fluid Mech., 277, 227-248 (1994) · Zbl 0875.76665
[66] Oran, E. S.; Gamezo, V. N., Origins of the deflagration-to-detonation transition in gas-phase combustion, Combust. Flame, 148, 4-47 (2007)
[67] Daimon, Y.; Matsuo, A., Unsteady features on one-dimensional hydrogen-air detonations, Phys. Fluids, 19, 116101 (2007) · Zbl 1182.76176
[68] Yungster, S.; Radhakrishnan, K., Pulsating one-dimensional detonations in hydrogen-air mixtures, Combust. Theory Model., 8, 745-770 (2004)
[69] Weber, J., Physical and numerical aspects of two-dimensional detonation simulations including detailed chemical kinetics on a massively parallel connection machine, Mechanical Engineering (1994), University of Maryland: University of Maryland College Park, MD, Ph.D.
[70] Lefebvre, M. H.; Oran, E. S., Analysis of shock structures in a regular detonation, Shock Waves, 4, 277-283 (1995) · Zbl 0825.76400
[71] Oran, E. S.; Weber, J. W.; Stefaniw, E. I.; Lefebvre, M. H.; Anderson, J. D., A numerical study of a two-dimensional \(H_2-O_2-Ar\) detonation using a detailed chemical reaction model, Combust. Flame, 113, 147-163 (1998)
[72] Hu, X. Y.; Khoo, B. C.; Zhang, D. L.; Jiang, Z. L., The cellular structure of a two-dimensional \(H_2/O_2/Ar\) detonation wave, Combust. Theory Model., 8, 339-359 (2004)
[73] Wang, C. J.; Xu, S. L., Re-initiation phenomenon of gaseous detonation induced by shock reflection, Shock Waves, 16, 247-256 (2007) · Zbl 1195.76423
[74] Wang, C. J.; Xu, S. L.; Guo, C. M., Gaseous detonation propagation in a bifurcated tube, J. Fluid Mech., 599, 81-110 (2008) · Zbl 1151.76360
[75] Tsuboi, N.; Asahara, M.; Eto, K.; Hayashi, A. K., Numerical simulation of spinning detonation in square tube, Shock Waves, 18, 329-344 (2008) · Zbl 1152.76058
[76] Eto, K.; Tsuboi, N.; Hayashi, A. K., Numerical study of three-dimensional C-J detonation waves: detailed propagating mechanism and existence of OH radical, Proc. Combust. Inst., 30, 1907-1913 (2005)
[77] Li, C.; Kailasanath, K.; Oran, E. S., Detonation structures behind oblique shocks, Phys. Fluids, 6, 1600-1611 (1994) · Zbl 0825.76396
[78] da Silva, L. F.F.; Azevedo, J. L.F.; Korzenowski, H., Unstructured adaptive grid flow simulations of inert and reactive gas mixtures, J. Comput. Phys., 522-540 (2000) · Zbl 0974.76049
[79] Fusina, G.; Sislian, J. P.; Parent, B., Formation and stability of near Chapman-Jouguet standing oblique detonation waves, AIAA J., 43, 1591-1604 (2005)
[80] Gordon, S.; McBride, B. J., Computer Program for calculation of complex chemical equilibrium and applications I. Analysis (1994), NASA Glenn Research Center, Technical Report NASA RP-1311
[81] McBride, B. J.; Gordon, S., Computer program for calculation of complex chemical equilibrium and applications II. User’s manual and program description (1996), NASA Glenn Research Center, Technical report NASA RP-1311-P2
[82] Lee, J. H.S., Dynamic parameters of gaseous detonations, Annu. Rev. Fluid Mech., 16, 311-336 (1984)
[83] Oran, E. S.; Gamezo, V. N., Origins of the deflagration-to-detonation transition in gas-phase combustion, Combust. Flame, 148, 4-47 (2007)
[84] Ranjan, D.; Oakley, J.; Bonazza, R., Shock-bubble interactions, Annu. Rev. Fluid Mech., 43, 117-140 (2011) · Zbl 1299.76125
[85] Yang, J.; Kubota, T.; Zukoski, E. E., Applications of shock-induced mixing to supersonic combustion, AIAA J., 31, 854-862 (1993)
[86] Bagabir, A.; Drikakis, D., Mach number effects on shock-bubble interaction, Shock Waves, 11, 209-218 (2001) · Zbl 0996.76038
[87] Picone, J. M.; Boris, J. P., Vorticity generation by shock propagation through bubbles in a gas, J. Fluid Mech., 189, 23-51 (1988)
[88] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129-163 (1996) · Zbl 0877.76046
[89] Marquina, A.; Mulet, P., A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185, 120-138 (2003) · Zbl 1064.76078
[90] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 715-732 (2006) · Zbl 1189.76351
[91] Haas, J.-F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41-76 (1987)
[92] Giordano, J.; Burtschell, Y., Richtmyer-Meshkov instability induced by shock-bubble interaction: numerical and analytical studies with experimental validation, Phys. Fluids, 18, 036102 (2006)
[93] Levy, K.; Sadot, O.; Rikanati, A.; Kartoon, D.; Srebro, Y.; Yosef Hai, A.; Ben Dor, G.; Shvarts, D., Scaling in the shock-bubble interaction, Laser Part. Beams, 21, 335-339 (2003)
[94] Shankar, S. K.; Kawai, S.; Lele, S. K., Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder, Phys. Fluids, 23, 024102 (2011)
[95] Tomkins, C.; Kumar, S.; Orlicz, G.; Prestridge, K. P., An experimental investigation of mixing mechanisms in shock-accelerated flow, J. Fluid Mech., 611, 131-150 (2008) · Zbl 1151.76357
[96] Weirs, G.; Dwarkadas, V.; Plewa, T.; Tomkins, C.; Marr-Lyon, M., Validating the FLASH code: vortex-dominated flows, Astrophys. Space Sci., 298, 341-346 (2005) · Zbl 1132.85352
[97] Weirs, V. G.; Dupont, T.; Plewa, T., Three-dimensional effects in shock-cylinder interactions, Phys. Fluids, 20, 044102 (2008) · Zbl 1182.76823
[98] Don, W. S.; Quillen, C. B., Numerical simulation of shock-cylinder interactions, J. Comput. Phys., 122, 244-265 (1995) · Zbl 0840.76067
[99] Sjoegreen, B.; Yee, H. C., Low dissipative high-order numerical simulations of supersonic reactive flows, Int. J. Numer. Methods Fluids, 43, 1221-1238 (2003) · Zbl 1032.76643
[100] Billet, G.; Giovangigli, V.; de Gassowski, G., Impact of volume viscosity on a shock-hydrogen-bubble interaction, Combust. Theory Model., 12, 221-248 (2008) · Zbl 1148.80374
[101] Dong, G.; Fan, B.; Ye, J., Numerical investigation of ethylene flame bubble instability induced by shock waves, Shock Waves, 17, 409-419 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.