×

Stabilization of nonlinear systems by use of semidefinite Lyapunov functions. (English) Zbl 0941.93050

The authors give a stabilizability result of the Jurdjevic-Quinn type for nonlinear, non-affine systems \[ \dot x= f(x,u), \] where \(x\in\mathbb{R}^n\), \(u\in\mathbb{R}^m\), \(f\in C^\infty\) and \(f(0,0)= 0\). The method rests on a Lyapunov function which is in general only semi-definite negative. The result is an application of a suitable extension of LaSalle’s invariance principle.

MSC:

93D15 Stabilization of systems by feedback
93D30 Lyapunov and storage functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bacciotti, A., Local Stabiaization of Nonlinear Control systems, (Series on Advances in Mathematics for Applied Sciences (1992), World Scientific: World Scientific Singapore)
[2] Sepulchre, R.; Jankovic, M.; Kokotivic, P., Constructive Nonlinear Control (1997), Springer-Verlag: Springer-Verlag New York · Zbl 1067.93500
[3] Sontag, E. D., Feedback stabilization of nonlinear systems, (Kaashoek, M. A.; etal., Robust Control of Linear Systems and Nonlinear Control (1990)), 61-81, Boston, MA · Zbl 0735.93063
[4] Hahn, W., Stability of Motion (1967), Springer-Verlag: Springer-Verlag New York · Zbl 0189.38503
[5] Aeyels, D., Local and global stabilizability for nonlinear systems, (Byrnes, C. I.; etal., Theory and Applications of Nonlinear Control Systems (1986), Elsevier: Elsevier Amsterdam), 93-105
[6] Brockett, R. W., Asymptotic stability and feedback stabilization, (Brockett, R. W.; etal., Differential Geometric Control Theory (1983), Birkhäuser: Birkhäuser Boston, MA), 181-191 · Zbl 0528.93051
[7] Carr, J., Applications of Center Manifold Theory (1981), Springer-Verlag: Springer-Verlag New York
[8] Seibert, P.; Suyarez, R., Global stabilization of nonlinear cascade systems, Systems Contr. Lett., 14, 347-352 (1990) · Zbl 0699.93073
[9] Sontag, E. D., Further facts about input to state stabilization, IEEE Trans. Automat. Contr., 35, 473-477 (1990) · Zbl 0704.93056
[10] Vidyasagar, M., Decomposition techniques for large scale systems with nonadditive interactions: Stability and stabilizablity, IEE Trans. Automat. Contr., 25, 773-779 (1980) · Zbl 0478.93044
[11] Iggidr, A.; Kalitine, B.; Outbib, R., Semidefinite Lyapunov functions stability and stabilization, Math. Contr. Signals Syst., 9, 95-106 (1996) · Zbl 0868.93048
[12] Gauthier, J. P.; Bornard, G., Stabilisation des systèmes non linéaires, (Outils et Modèles Mathématiques pour l’Automatique et la Théorie du Signal (1981), Editions du CNRS) · Zbl 0513.93045
[13] Jurdjevic, V.; Quinn, J. P., Controllability and stability, J. Diff. Equ., 28, 381-389 (1978) · Zbl 0417.93012
[14] Outbib, R.; Salletr, G., Stabilizability of the angular velocity of a rigid body revisited, Systems Contr. Lett., 18, 93-98 (1992) · Zbl 0743.93082
[15] Tsinias, J., Sufficient Lyapunov-like conditions for stabilization, Math. Contr. Singals. Syst., 2, 343-357 (1989) · Zbl 0688.93048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.