×

Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. (English) Zbl 1364.35361

Summary: We perform the asymptotic analysis of parabolic equations with stiff transport terms. This kind of problem occurs, for example, in collisional gyrokinetic theory for tokamak plasmas, where the velocity diffusion of the collision mechanism is dominated by the velocity advection along the Laplace force corresponding to a strong magnetic field. This work appeal to the filtering techniques. Removing the fast oscillations associated to the singular transport operator, leads to a stable family of profiles. The limit profile comes by averaging with respect to the fast time variable, and still satisfies a parabolic model, whose diffusion matrix is completely characterized in terms of the original diffusion matrix and the stiff transport operator. Introducing first order correctors allows us to obtain strong convergence results, for general initial conditions (not necessarily well prepared).

MSC:

35Q75 PDEs in connection with relativity and gravitational theory
78A35 Motion of charged particles
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23, 1482 (1992) · Zbl 0770.35005 · doi:10.1137/0523084
[2] V. I. Arnold, <em>Ordinary Differential Equations</em>,, \(2^{nd}\) edition (2006)
[3] V. I. Arnold, <em>Mathematical Methods of Classical Mechanics</em>,, Springer (1989) · doi:10.1007/978-1-4757-2063-1
[4] A. Bensoussan, <em>Asymptotic Analysis for Periodic Structures</em>,, AMS Chelsea Publishing (2011) · Zbl 1229.35001
[5] H. Berestycki, Elliptic eigenvalue problems with large drift and applications to non linear propagation phenomena,, Comm. Math. Phys., 253, 451 (2005) · Zbl 1123.35033 · doi:10.1007/s00220-004-1201-9
[6] T. Blanc, Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, preprint,, <a href=
[7] M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics,, J. Differential Equations, 249, 1620 (2010) · Zbl 1229.35298 · doi:10.1016/j.jde.2010.07.010
[8] M. Bostan, Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation,, Quart. Appl. Math., 72, 323 (2014) · Zbl 1290.35268 · doi:10.1090/S0033-569X-2014-01356-1
[9] M. Bostan, Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker-Planck-Landau equation,, Quart. Appl. Math., 72, 513 (2014) · Zbl 1298.35223 · doi:10.1090/S0033-569X-2014-01357-4
[10] M. Bostan, Transport of charged particles under fast oscillating magnetic fields,, SIAM J. Math. Anal., 44, 1415 (2012) · Zbl 1256.35170 · doi:10.1137/100797400
[11] M. Bostan, Strongly anisotropic diffusion problems; asymptotic analysis,, J. Differential Equations, 256, 1043 (2014) · Zbl 1288.35468 · doi:10.1016/j.jde.2013.10.008
[12] M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime,, SIAM J. Math. Anal., 48, 2133 (2016) · Zbl 1351.35218 · doi:10.1137/15M1033034
[13] S. Brahim-Otsmane, Correctors for the homogenization on the wave and heat equations,, J. Math. Pures Appl., 71, 197 (1992) · Zbl 0837.35016
[14] A. J. Brizard, Variational principle for non linear gyrokinetic Vlasov-Maxwell equations,, Phys. Plasmas, 7, 4816 (2000) · doi:10.1063/1.1322063
[15] A. J. Brizard, A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields,, Phys. Plasmas, 11, 4429 (2004) · doi:10.1063/1.1780532
[16] A. J. Brizard, Foundations of nonlinear gyrokinetic theory,, Rev. Modern Phys., 79, 421 (2007) · Zbl 1205.76309 · doi:10.1103/RevModPhys.79.421
[17] N. Crouseilles, Comparison of numerical solvers for anisotropic diffusion equations arising in plasma physics,, J. Sc. Comput., 65, 1091 (2015) · Zbl 1330.82047 · doi:10.1007/s10915-015-9999-1
[18] A.-L. Dalibard, Homogenization of linear transport equations in a stationary ergodic setting,, Comm. Partial Differential Equations, 33, 881 (2008) · Zbl 1155.35113 · doi:10.1080/03605300701518216
[19] R. Dautray, <em>Mathematical Analysis and Numerical Methods for Science and Technology,</em>, vol. 5: Evolution problems 1 (2000) · Zbl 0942.35001 · doi:10.1007/978-3-642-58090-1
[20] P. Degond, An asymptotic preserving scheme for strongly anisotropic elliptic problems,, Multiscale Model. Simul., 8, 645 · Zbl 1190.35216 · doi:10.1137/090754200
[21] A. Fannjiang, Quenching of reaction by cellular flows,, Geom. Funct. Anal., 16, 40 (2006) · Zbl 1097.35077 · doi:10.1007/s00039-006-0554-y
[22] A. Fannjiang, Convection enhanced diffusion for periodic flows,, SIAM J. Appl. Math., 54, 333 (1994) · Zbl 0796.76084 · doi:10.1137/S0036139992236785
[23] F. Filbet, Numerical study of a nonlinear heat equation for plasma physics,, Int. J. Comput. Math., 89, 1060 (2012) · Zbl 1258.65081 · doi:10.1080/00207160.2012.679732
[24] E. Frénod, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field,, Asymptotic Anal., 18, 193 (1998) · Zbl 0936.82032
[25] E. Frénod, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32, 1227 (2001) · Zbl 0980.82030 · doi:10.1137/S0036141099364243
[26] X. Garbet, Neoclassical equilibrium in gyrokinetic simulations,, Phys. Plasmas, 16 (2009) · doi:10.1063/1.3153328
[27] F. Golse, The Vlasov-Poisson system with strong magnetic field,, J. Math. Pures Appl., 78, 791 (1999) · Zbl 0977.35108 · doi:10.1016/S0021-7824(99)00021-5
[28] T. Holding, Convergence along mean flows,, SIAM J. Math. Anal., 49, 222 (2017) · Zbl 1366.35094 · doi:10.1137/16M1068657
[29] G. Iyer, From homogenization to averaging in cellular flows,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 957 (2014) · Zbl 1302.35039 · doi:10.1016/j.anihpc.2013.06.003
[30] J.-L. Lions, <em>Non-homogeneous Boundary Value Problems and Applications</em>,, vol. I (1972) · Zbl 0223.35039 · doi:10.1007/978-3-642-65161-8
[31] G. N’Guetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20, 608 (1989) · Zbl 0688.35007 · doi:10.1137/0520043
[32] A. Novikov, Boundary layers for cellular flows at high Péclet numbers,, Comm. Pure Appl. Math., 58, 867 (2005) · Zbl 1112.76023 · doi:10.1002/cpa.20058
[33] G. A. Pavliotis, <em>Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics</em>,, vol.53 (2008) · Zbl 1160.35006 · doi:10.1007/978-0-387-73829-1
[34] M. Reed, <em>Methods of Modern Mathematical Physics</em>,, vol. I (1980) · Zbl 0459.46001
[35] X. Q. Xu, Numerical simulation of ion-temperature-gradient-driven modes,, Phys. Fluids B, 3, 627 (1991) · doi:10.1063/1.859862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.