×

Identifying the parametric occurrence of multiple steady states for some biological networks. (English) Zbl 1442.92056

In the paper under review, the authors apply symbolic tools to study a parametric biological problem by determining regions in a parameter space over which the system is multistationary, i.e. there are multiple steady states for positive real values of variables and parameters. The particular biological model which is discussed in this paper is the BioModel 26 of the MAPK network. For this study, the authors apply virtual substitution, lazy real triangularization and cylindrical algebraic decomposition methods to give full semi-algebraic solution formulae for the problem by using Regular Chains Library in Maple.

MSC:

92C42 Systems biology, networks
68W30 Symbolic computation and algebraic computation
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnon, D. S.; Collins, G. E.; McCallum, S., Cylindrical algebraic decomposition I: the basic algorithm, SIAM J. Comput., 13, 4, 865-877 (1984) · Zbl 0562.14001
[2] Aubry, P.; Lazard, D.; Moreno Maza, M., On the theories of triangular sets, J. Symb. Comput., 28, 1-2, 105-124 (1999) · Zbl 0943.12003
[3] Bates, D.; Brake, D.; Niemerg, M., Paramotopy: parameter homotopies in parallel, (Davenport, J.; Kauers, M.; Labahn, G.; Urban, J., Mathematical Software - Proc. ICMS 2018. Mathematical Software - Proc. ICMS 2018, Lecture Notes in Computer Science, vol. 10931 (2018), Springer International Publishing), 28-35 · Zbl 1396.65179
[4] Bates, D. J.; Hauenstein, J. D.; Sommese, A. J.; Wampler, C. W., Bertini: software for numerical algebraic geometry (2013)
[5] Bhalla, U. S.; Iyengar, R., Emergent properties of networks of biological signaling pathways, Science, 283, 5400, 381-387 (1999)
[6] Bradford, R.; Davenport, J.; England, M.; Errami, H.; Gerdt, V.; Grigoriev, D.; Hoyt, C.; Kosta, M.; Radulescu, O.; Sturm, T.; Weber, A., A case study on the parametric occurrence of multiple steady states, (Proc. ISSAC ’17 (2017), ACM), 45-52 · Zbl 1444.92034
[7] Bradford, R.; Davenport, J.; England, M.; McCallum, S.; Wilson, D., Truth table invariant cylindrical algebraic decomposition, J. Symb. Comput., 76, 1-35 (2016) · Zbl 1351.68314
[8] Bradford, R.; Davenport, J.; England, M.; Wilson, D., Optimising problem formulations for cylindrical algebraic decomposition, (Carette, J.; Aspinall, D.; Lange, C.; Sojka, P.; Windsteiger, W., Intelligent Computer Mathematics. Intelligent Computer Mathematics, Lecture Notes in Computer Science, vol. 7961 (2013), Springer: Springer Berlin, Heidelberg), 19-34 · Zbl 1390.68775
[9] Brown, C., QEPCAD B: a program for computing with semi-algebraic sets using CADs, SIGSAM Bull., 37, 4, 97-108 (2003) · Zbl 1083.68148
[10] Caviness, B.; Johnson, J., Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts & Monographs in Symbolic Computation (1998), Springer-Verlag
[11] Chen, C.; Davenport, J.; May, J.; Moreno Maza, M.; Xia, B.; Xiao, R., Triangular decomposition of semi-algebraic systems, J. Symb. Comput., 49, 3-26 (2013) · Zbl 1260.14070
[12] Chen, C.; Moreno Maza, M.; Xia, B.; Yang, L., Computing cylindrical algebraic decomposition via triangular decomposition, (Proc. ISSAC ’09 (2009), ACM), 95-102 · Zbl 1237.14068
[13] Collins, G., Quantifier elimination by cylindrical algebraic decomposition - 20 years of progress, (Caviness, B.; Johnson, J., Quantifier Elimination and Cylindrical Algebraic Decomposition. Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts & Monographs in Symbolic Computation (1998), Springer-Verlag), 8-23 · Zbl 0900.03053
[14] Conradi, C.; Feliu, E.; Mincheva, M.; Wiuf, C., Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13, 10, Article e1005751 pp. (2017)
[15] Conradi, C.; Flockerzi, D.; Raisch, J., Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space, Math. Biosci., 211, 1, 105-131 (2008) · Zbl 1130.92024
[16] Conradi, C.; Mincheva, M., Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11, 95 (2014)
[17] Craciun, G.; Dickenstein, A.; Shiu, A.; Sturmfels, B., Toric dynamical systems, J. Symb. Comput., 44, 11, 1551-1565 (2009) · Zbl 1188.37082
[18] Dolzmann, A.; Seidl, A.; Sturm, T., Efficient projection orders for CAD, (Proc. ISSAC ’04 (2004), ACM), 111-118 · Zbl 1134.68575
[19] Dolzmann, A.; Sturm, T., Redlog: computer algebra meets computer logic, SIGSAM Bull., 31, 2, 2-9 (1997)
[20] Dolzmann, A.; Sturm, T., Simplification of quantifier-free formulae over ordered fields, J. Symb. Comput., 24, 2, 209-231 (1997) · Zbl 0882.03030
[21] England, M.; Bradford, R.; Davenport, J., Improving the use of equational constraints in cylindrical algebraic decomposition, (Proc. ISSAC ’15 (2015), ACM), 165-172 · Zbl 1346.68283
[22] England, M.; Davenport, J., The complexity of cylindrical algebraic decomposition with respect to polynomial degree, (Proceedings of the CASC 2016. Proceedings of the CASC 2016, LNCS, vol. 9890 (2016), Springer), 172-192 · Zbl 1453.13079
[23] England, M.; Errami, H.; Grigoriev, D.; Radulescu, O.; Sturm, T.; Weber, A., Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks, (Computer Algebra in Scientific Computing (Proc. CASC ’17). Computer Algebra in Scientific Computing (Proc. CASC ’17), Lecture Notes in Computer Science, vol. 10490 (2017), Springer), 93-108 · Zbl 1455.92058
[24] England, M.; Wilson, D.; Bradford, R.; Davenport, J., Using the Regular Chains Library to build cylindrical algebraic decompositions by projecting and lifting, (Hong, H.; Yap, C., Mathematical Software - ICMS 2014. Mathematical Software - ICMS 2014, Lecture Notes in Computer Science, vol. 8592 (2014), Springer: Springer Heidelberg), 458-465 · Zbl 1437.14008
[25] Famili, I.; Palsson, B.Ø., The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools, Biophys. J., 85, 1, 16-26 (2003)
[26] Feinberg, M., Stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42, 10, 2229-2268 (1987)
[27] Girvan, M.; Newman, M. E.J., Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99, 12, 7821-7826 (2002) · Zbl 1032.91716
[28] Grandoni, F.; Könemann, J.; Panconesi, A., Distributed weighted vertex cover via maximal matchings, ACM Trans. Algorithms, 5, 1, 1-12 (2008) · Zbl 1445.68164
[29] Grigoriev, D.; Samal, S. S.; Vakulenko, S.; Weber, A., Algorithms to study large metabolic network dynamics, Math. Model. Nat. Phenom., 10, 5, 100-118 (2015) · Zbl 1331.34087
[30] Grigoriev, D.; Vorobjov, N. N., Solving systems of polynomial inequalities in subexponential time, J. Symb. Comput., 5, 37-64 (1988) · Zbl 0662.12001
[31] Gross, E.; Davis, B.; Ho, K. L.; Bates, D. J.; Harrington, H. A., Numerical algebraic geometry for model selection and its application to the life sciences, J. R. Soc. Interface, 13, 123 (2016)
[32] Gross, E.; Harrington, H. A.; Rosen, Z.; Sturmfels, B., Algebraic systems biology: a case study for the Wnt pathway, Bull. Math. Biol., 78, 1, 21-51 (2016) · Zbl 1356.92038
[33] Hong, H.; Liska, R.; Steinberg, S., Testing stability by quantifier elimination, J. Symb. Comput., 24, 2, 161-187 (1997) · Zbl 0886.65087
[34] Huang, Z.; England, M.; Davenport, J.; Paulson, L., Using machine learning to decide when to precondition cylindrical algebraic decomposition with Groebner bases, (18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC ’16) (2016), IEEE), 45-52
[35] Huang, Z.; England, M.; Wilson, D.; Bridge, J.; Davenport, J.; Paulson, L., Using machine learning to improve cylindrical algebraic decomposition, Math. Comput. Sci (2019), 28 pages · Zbl 1474.68464
[36] Huang, Z.; England, M.; Wilson, D.; Davenport, J.; Paulson, L.; Bridge, J., Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition, (Intelligent Computer Mathematics. Intelligent Computer Mathematics, LNAI, vol. 8543 (2014), Springer), 92-107 · Zbl 1304.68224
[37] Johnston, M. D., A note on “MAPK networks and their capacity for multistationarity due to toric steady states” (2014)
[38] Joshi, B.; Shiu, A., A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10, 5, 47-67 (2015) · Zbl 1371.92148
[39] Karp, R. M., Reducibility among combinatorial problems, (Complexity of Computer Computations (1972), Plenum Press: Plenum Press New York), 85-103 · Zbl 1467.68065
[40] Košta, M., New Concepts for Real Quantifier Elimination by Virtual Substitution (December 2016), Saarland University: Saarland University Germany, Doctoral dissertation. Available from
[41] Legewie, S.; Schoeberl, B.; Blüthgen, N.; Herzel, H., Competing docking interactions can bring about bistability in the MAPK cascade, Biophys. J., 93, 7, 2279-2288 (2007)
[42] Leykin, A., Numerical algebraic geometry, J. Softw. Algebra Geom., 3, 5-10 (2011) · Zbl 1311.14057
[43] Li, C.; Donizelli, M.; Rodriguez, N.; Dharuri, H.; Endler, L.; Chelliah, V.; Li, L.; He, E.; Henry, A.; Stefan, M. I.; Snoep, J. L.; Hucka, M.; Le Novère, N.; Laibe, C., BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models, BMC Syst. Biol., 4, 92 (2010)
[44] Lichtblau, D., 2017. Symbolic analysis of multiple steady states in a MAPK chemical reaction network. Under preparation – received in personal communication.
[45] Loos, R.; Weispfenning, V., Applying linear quantifier elimination, Comput. J., 36, 5, 450-462 (1993) · Zbl 0787.03021
[46] Markevich, N. I.; Hoek, J. B.; Kholodenko, B. N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164, 3, 353-359 (2004)
[47] McCallum, S., Solving polynomial strict inequalities using cylindrical algebraic decomposition, Comput. J., 36, 5, 432-438 (1993) · Zbl 0789.68080
[48] Millán, M. P.; Dickenstein, A., The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17, 2, 1650-1682 (2018) · Zbl 1395.92071
[49] Millán, M. P.; Turjanski, A. G., MAPK’s networks and their capacity for multistationarity due to toric steady states, Math. Biosci., 262, 125-137 (2015) · Zbl 1315.92029
[50] Rashevsky, N., Mathematical Biophysics: Physico-Mathematical Foundations of Biology (1960), Dover: Dover New York
[51] Schuster, S.; Höfer, T., Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity, J. Chem. Soc. Faraday Trans., 87, 16, 2561-2566 (1991)
[52] Strzeboński, A., Solving systems of strict polynomial inequalities, J. Symb. Comput., 29, 3, 471-480 (2000) · Zbl 0962.68183
[53] Sturm, T., A survey of some methods for real quantifier elimination, decision, and satisfiability and their applications, Math. Comput. Sci., 11, 3-4, 483-502 (December 2017) · Zbl 1425.68380
[54] Sturm, T., Thirty years of virtual substitution, (Proc. ISSAC 2018 (2018), ACM), 11-16 · Zbl 1460.03007
[55] Vakulenko, S.; Grigoriev, D.; Weber, A., Reduction methods and chaos for quadratic systems of differential equations, Stud. Appl. Math., 135, 3, 225-247 (2015) · Zbl 1359.92036
[56] Verschelde, J., Polynomial homotopy continuation with PHCpack, ACM Commun. Comput. Algebra, 44, 3/4, 217-220 (2011) · Zbl 1308.68198
[57] Wang, D., Elimination Methods (2000), Springer
[58] Wang, D.; Xia, B., Stability analysis of biological systems with real solution classification, (Proceedings of the ISSAC 2005 (2005), ACM), 354-361 · Zbl 1360.92048
[59] Weispfenning, V., The complexity of linear problems in fields, J. Symb. Comput., 5, 1&2, 3-27 (1988) · Zbl 0646.03005
[60] Weispfenning, V., Quantifier elimination for real algebra—the cubic case, (Proceedings of the International Symposium on Symbolic and Algebraic Computation (1994), ACM Press), 258-263 · Zbl 0919.03030
[61] Weispfenning, V., Quantifier elimination for real algebra—the quadratic case and beyond, Appl. Algebra Eng. Commun., 8, 2, 85-101 (Feb. 1997) · Zbl 0867.03003
[62] Weng, G.; Bhalla, U. S.; Iyengar, R., Complexity in biological signaling systems, Science, 284, 5411, 92-96 (1999)
[63] Wilson, D.; Bradford, R.; Davenport, J.; England, M., Cylindrical algebraic sub-decompositions, Math. Comput. Sci., 8, 263-288 (2014) · Zbl 1309.68232
[64] Zumsande, M.; Gross, T., Bifurcations and chaos in the MAPK signaling cascade, J. Theor. Biol., 265, 3, 481-491 (2010) · Zbl 1461.92039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.