×

Exactly solvable models in atomic and molecular physics. (English) Zbl 1200.81149

Summary: We construct integrable generalized models in a systematic way exploring different representations of the \(\text{gl}(N)\) algebra. The models are then interpreted in the context of atomic and molecular physics, most of them related to different types of Bose-Einstein condensates. The spectrum of the models is given through the analytical Bethe ansatz method. We further extend these results to the case of the superalgebra \(\text{gl}(M|N)\), providing in this way models which also include fermions.

MSC:

81U15 Exactly and quasi-solvable systems arising in quantum theory
81V45 Atomic physics
81V55 Molecular physics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Batchelor, M. T.; Guan, X.-W.; Oelkers, N.; Foerster, A., Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds, J. Stat. Mech., 0410, P017 (2004) · Zbl 1073.82533
[2] Batchelor, M. T.; Guan, X.-W.; Oelkers, N.; Tsuboi, Z., Integrable models and quantum spin ladders: Comparison between theory and experiment for the strong coupling compounds
[3] von Delft, J.; Ralph, D. C., Spectroscopy of discrete energy levels in ultrasmall metallic grains, Phys. Rep., 345, 61 (2001) · Zbl 0978.81522
[4] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), Academic Press · Zbl 0538.60093
[5] Essler, F. H.; Korepin, V. E., Exactly Solvable Models of Strongly Correlated Electrons (1994), World Scientific · Zbl 1066.82506
[6] L.D. Faddeev, The Bethe Ansatz, Andrejeroski Lectures, 1993, SFB288 preprint 70; L.D. Faddeev, The Bethe Ansatz, Andrejeroski Lectures, 1993, SFB288 preprint 70
[7] Iachello, F.; Arimo, A., The Interacting Boson Model (1995), Cambridge Univ. Press
[8] Leggett, A. J., Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys., 73, 307 (2001)
[9] Lipatov, L., High energy asymptotics of multi-colour QCD and exactly solvable lattice models, JETP Lett., 59, 596 (1994)
[10] Faddeev, L.; Korchemsky, G., High energy QCD as a completely integrable model, Phys. Lett. B, 342, 311 (1995)
[11] Ferretti, G.; Heise, R.; Zarembo, K., New integrable structures in large-\(N\) QCD
[12] Belitsky, A. V.; Braun, V. M.; Gorsky, A. S.; Korchemsky, G. P., Integrability in QCD and beyond, Int. J. Mod. Phys. A, 19, 4715 (2004) · Zbl 1059.81164
[13] Minahan, J. A.; Zarembo, K., The Bethe-Ansatz for \(N = 4\) super-Yang-Mills, JHEP, 0303, 013 (2003)
[14] Beisert, N.; Staudacher, M., Long-Range PSU(2, 2|4) Bethe Ansaetze for Gauge Theory and Strings, Nucl. Phys. B, 727, 1 (2005) · Zbl 1126.81328
[15] Einstein, A., Quantentheorie des einatomigen idealen Gases, Sitzungsber. Preussichen Akad. Wiss. Phys.-Math. Kl., 261 (1924) · JFM 51.0755.04
[16] Anglin, J. R.; Ketterle, W., Bose-Einstein condensation of atomic gases, Nature, 416, 211 (2002)
[17] Zoller, P., Bose-Einstein condensation: Making it with molecules, Nature, 417, 493 (2002)
[18] Hutson, J.; Soldán, P., Molecule formation in ultracold atomic gases
[19] Batchelor, M. T., The Bethe ansatz after 75 years, Phys. Today, 60, 36 (2007)
[20] Stickney, J.; Zozulya, A.; Anderson, D., Transistor-like behaviour of a Bose-Einstein condensate in a triple well potential
[21] Sklyanin, E. K.; Faddeev, L. D., Method of the inverse scattering problem and quantum nonlinear Schrödinger equation, Dokl. Acad. Nauk SSSR, 244, 1337 (1978)
[22] Sklyanin, E. K., Quantum version of the method of inverse scattering problem, Zap. Nauchn. Sem. LOMI, 95, 55 (1980) · Zbl 0464.35071
[23] Kulish, P. P.; Reshetikhin, N. Yu.; Sklyanin, E. K., Yang-Baxter equation and representation theory: I, Lett. Math. Phys., 5, 393 (1981) · Zbl 0502.35074
[24] Kulish, P. P.; Sklyanin, E. K., Quantum inverse scattering method and the Heisenberg ferromagnet, Phys. Lett. A, 70, 461 (1979)
[25] Faddeev, L. D.; Reshetikhin, N. Yu.; Takhtajan, L. A., Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1, 193 (1990) · Zbl 0715.17015
[26] Korepin, V. E.; Izergin, G.; Bogoliubov, N. M., Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz (1993), Cambridge Univ. Press · Zbl 0787.47006
[27] Faddeev, L. D.; Takhtajan, L. A., What is the spin of a spin wave?, Phys. Lett. A, 85, 375 (1981) · Zbl 1327.39013
[28] Kulish, P.; Reshetikhin, N. Yu., Diagonalisation of \(GL(N)\) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A, 16, L591 (1983) · Zbl 0545.35082
[29] Ogievetsky, E.; Wiegmann, P., Factorized S-matrix and the Bethe ansatz for simple Lie groups, Phys. Lett. B, 168, 360 (1986)
[30] Drinfel’d, V. G., A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl., 36, 212 (1988) · Zbl 0667.16004
[31] Baxter, R. J., J. Stat. Phys., 8, 25 (1973) · Zbl 1206.82013
[32] Yang, C. N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Rev. Lett., 19, 1312 (1967) · Zbl 0152.46301
[33] Ge, M.-L.; Xue, K.; Wang, Y., An Introduction to Yangian in Physics (1995), Second Pacific Winter School in Theoretical Physics: Second Pacific Winter School in Theoretical Physics Korea
[34] Kundu, A., Yang-Baxter algebra and generation of quantum integrable models · Zbl 1138.81029
[35] Ortiz, G.; Somma, R.; Dukelsky, J.; Rombouts, S., Exactly-solvable models derived from a generalized Gaudin algebra, Nucl. Phys. B, 707, 421 (2005) · Zbl 1137.82312
[36] Jaynes, E. T.; Cummings, F. W., Proc. IEEE, 51, 89 (1963)
[37] Jonathan, D.; Furuya, K.; Vidiella-Barranco, A., Dressed-state approach to population trapping in the Jaynes-Cummings model, and references therein
[38] Haken, H.; Wolf, H.; Brewer, W. D., The Physics of Atoms and Quanta: Introduction to Experiments and Theory (2004), Springer
[39] Foerster, A.; Links, J.; Zhou, H.-Q., Exact Solvability in Contemporary Physics, Classical and Quantum Nonlinear Integrable Systems (2003), IOP Publ. · Zbl 1032.82011
[40] Zhou, H.-Q.; Links, J.; Gould, M. D.; McKenzie, R. H., Solvable models of Bose-Einstein condensates: A new algebraic Bethe ansatz scheme, J. Math. Phys., 44, 4690 (2003) · Zbl 1062.82006
[41] Zhou, L.; Zhang, W.; Ling, H. Y.; Pu, H., Quantum correlation in the photoassociation of a heteronuclear Bose-Einstein condensate
[42] Zhou, H.-Q.; Links, J.; McKenzie, R. H.; Guan, X.-W., Exact results for a tunnel-coupled pair of trapped Bose-Einstein condensates, J. Phys. A, 36, L113 (2003) · Zbl 1040.82006
[43] Milburn, G. J.; Corney, J.; Wright, E. M.; Walls, D. F., Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential, Phys. Rev. A, 55, 4318 (1997)
[44] Tonel, A. P.; Links, J.; Foerster, A., Quantum dynamics of a model for two Josephson-coupled Bose-Einstein condensates, J. Phys. A, 38, 1235 (2005) · Zbl 1082.82004
[45] Albiez, M.; Gati, R.; Fölling, J.; Hunsmann, S.; Cristiani, M.; Oberthaler, M. K., Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 95, 010402 (2005)
[46] Nemoto, K.; Holmes, C.; Milburn, G.; Munro, W., Quantum dynamics of three coupled atomic Bose-Einstein condensates, Phys. Rev. A, 63, 013604-1 (2001)
[47] Liu, B.; Fu, L.-B.; Yang, S.-P.; Liu, J., Josephson oscillation and transition to self-trapping for Bose-Einstein-condensates in a triple-well trap
[48] Reichel, J., Microchip traps and Bose-Einstein condensation, Appl. Phys. B, 75, 469 (2002)
[49] Buonsante, P.; Franzosi, R.; Pena, V., Dynamical instability in a trimeric chain of interacting Bose-Einstein condensates, Phys. Rev. Lett., 90, 050404 (2003)
[50] Dounas-Frazer, D. R.; Hermundstad, A. M.; Carr, L. D., Ultracold bosons and entanglement in the tilted double-well
[51] Arnaudon, D.; Crampé, N.; Doikou, A.; Frappat, L.; Ragoucy, E., Analytical Bethe Ansatz for closed and open \(gl(n)\)-spin chains in any representation, J. Stat. Mech., 02, P007 (2005) · Zbl 1459.82026
[52] Molev, A.; Nazarov, M.; Olshanski, G., Yangians and classical Lie algebras, Russ. Math. Survey, 51, 205 (1996) · Zbl 0876.17014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.