zbMATH — the first resource for mathematics

Restriction of Siegel modular forms to modular curves. (English) Zbl 1021.11012
In this paper the authors get linear relations among the Fourier coefficients of Siegel modular forms, considering homomorphisms from the ring of Siegel modular forms of a given degree to suitable rings of elliptic modular forms. This is a consequence of a construction similar to Eichler’s embedding trick. Using this construction they prove that the space of cusp forms of degree 4 and weight 10 is one dimensional.

11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11F27 Theta series; Weil representation; theta correspondences
Full Text: DOI
[1] DOI: 10.1007/BF01350878 · Zbl 0283.10014 · doi:10.1007/BF01350878
[2] Duke, Math. Ann. 308 pp 525– (1997)
[3] Christian, Selberg’s Zeta-, L-, and Eisenstein series 1030 (1983) · Zbl 0519.10018 · doi:10.1007/BFb0071379
[4] DOI: 10.1007/BF01444624 · Zbl 0747.11022 · doi:10.1007/BF01444624
[5] DOI: 10.1007/BFb0098340 · doi:10.1007/BFb0098340
[6] DOI: 10.1007/s002080000083 · Zbl 0972.11035 · doi:10.1007/s002080000083
[7] Freitag, Siegelsche Modulfunktionen (1983) · doi:10.1007/978-3-642-68649-8
[8] Poor, Bull Austral. Math. Soc. 54 pp 309– (1996)
[9] Igusa, Christoffel Symposium pp 352– (1981) · doi:10.1007/978-3-0348-5452-8_24
[10] Nipp, Quaternary quadratic forms, computer generated tables (1991) · Zbl 0727.11018 · doi:10.1007/978-1-4612-3180-6
[11] Erokhin, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 112 pp 59– (1981)
[12] Erokhin, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 86 pp 82– (1979)
[13] DOI: 10.1007/BF01432695 · Zbl 0298.10017 · doi:10.1007/BF01432695
[14] Poor, Far East J. Math. Sci. (FJMS) 1 pp 849– (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.