×

A wavelet OFDM receiver for baseband power line communications. (English) Zbl 1336.93058

Summary: Wavelet OFDM is one of the medium access techniques adopted by the IEEE P1901 working group for broadband Power Line Communications (PLC). This paper reviews important aspects of baseband physical layer for broadband PLC, such as the scheme of modulation to obtain the transmitter and the characteristics of the recommended prototype filters. It further proposes a viable receiver system compatible with the transmitter and that provides perfect reconstruction characteristics in ideal environments. Furthermore, a procedure to perform the per-subcarrier frequency domain equalization, essential to deal with the power line channel effects at the receiver side, is also addressed. In order to greatly simplify the equalizer design, an efficient fast algorithm with reduced computational complexity is presented. Finally, this study is completed with several computer simulations, considering in-home PLC scenarios, to demonstrate the benefits of the proposed transceiver system.

MSC:

93B40 Computational methods in systems theory (MSC2010)
90B18 Communication networks in operations research
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hwang, T.; Yang, C.; Wu, G.; Li, S.; Li, G., OFDM and its wireless applicationsa survey, IEEE Trans. Veh. Technol., 58, 4, 1673-1694 (2009)
[2] Sahin, A.; Güvenç, İ.; Arslan, H., A survey on multicarrier communicationsprototype filters, lattice structures, and implementation aspects, IEEE Commun. Surv. Tutor., 16, 3, 1312-1338 (2014)
[3] Banelli, P.; Buzzi, S.; Colavolpe, G.; Modenini, A.; Rusek, F.; Ugolini, A., Modulation formats and waveforms for 5G networkswho will be the heir of OFDM?, IEEE Signal Process. Mag., 80-93 (2014)
[4] Farhang-Boroujeny, B., Filter bank multicarrier modulationa waveform candidate for 5G and beyond, Adv. Electr. Eng. (2014)
[5] Premnath, S.; Wasden, D.; Kasera, S. K.; Patwari, N.; Farhang-Boroujeny, B., Beyond OFDMbest-effort dynamic spectrum access using filterbank multicarrier, IEEE/ACM Trans. Netw., 21, 3, 869-882 (2013)
[6] Farhang-Boroujeny, B., OFDM versus filter bank multicarrier, IEEE Signal Process. Mag., 28, 3, 92-112 (2011)
[7] Lin, H.; Siohan, P., Capacity analysis for indoor PLC using different multi-carrier modulation schemes, IEEE Trans. Power Deliv., 25, 1, 113-124 (2010)
[8] Achaichia, P.; Bot, M. L.; Siohan, P., OFDM/OQAMa solution to efficiently increase the capacity of future PLC networks, IEEE Trans. Power Deliv., 26, 4, 2443-2455 (2011)
[9] Ma, R.; Chen, H.-H.; Huang, Y.-R.; Meng, W., Smart grid communicationits challenges and opportunities, IEEE Trans. Smart Grid, 4, 1, 36-46 (2013)
[10] Tcheou, M. P.; Lovisolo, L.; Ribeiro, M. V.; da Silva, E. A.B.; Rodrigues, M.; Romano, J. M.T.; Diniz, P. S.R., The compression of electric signal waveforms for smart gridsstate of the art and future trends, IEEE Trans. Smart Grid, 5, 1, 291-302 (2014)
[12] Bellanger, M.; Daguet, J., TDM-FDM transmultiplexerdigital polyphase and FFT, IEEE Trans. Commun., 22, 9, 1199-1205 (1974)
[13] Bellanger, M., On computational complexity in digital transmultiplexer filters, IEEE Trans. Commun., 30, 7, 1461-1465 (1982)
[14] Farhang-Boroujeny, B.; Yuen, C. H., Cosine modulated and offset QAM filter bank multicarrier techniquesa continuous-time prospect, EURASIP J. Adv. Signal Process., 2010, 6 (2010)
[16] Crochiere, R. E.; Rabiner, L. R., Multirate Digital Signal Processing (1983), Prentice Hall: Prentice Hall Englewood Cliffs, New Jersey
[17] Cruz-Roldán, F.; Blanco-Velasco, M., Joint use of DFT filter banks and modulated transmultiplexers for multicarrier communications, Signal Process., 91, 7, 1622-1635 (2011) · Zbl 1213.94031
[18] Cruz-Roldán, F.; Blanco-Velasco, M.; Llorente, J. I.G., Zero-padding or cyclic prefix for MDFT-based filter bank multicarrier communications, Signal Process., 92, 7, 1646-1657 (2012)
[19] Malvar, H., Signal Processing with Lapped Transforms (1992), Artech House: Artech House Norwood, MA · Zbl 0948.94505
[20] Koilpillai, R. D.; Vaidyanathan, P. P., Cosine-modulated FIR filter banks satisfying perfect reconstruction, IEEE Trans. Signal Process., 40, 4, 770-783 (1992)
[21] Martucci, S. A., Symmetric convolution and the discrete sine and cosine transform, IEEE Trans. Signal Process., 42, 5, 1038-1051 (1994)
[22] Sánchez, V.; García, P.; Peinado, A. M.; Segura, J. C.; Rubio, A. J., Diagonalizing properties of the discrete cosine transform, IEEE Trans. Signal Process., 43, 11, 2631-2641 (1995)
[23] Vaidyanathan, P., Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks, IEEE Trans. Circuits Syst., 33, 11, 1045-1064 (1986) · Zbl 0612.94013
[24] Britanak, V., The fast DCT-IV/DST-IV computation via the MDCT, Signal Process., 83, 8, 1803-1813 (2003) · Zbl 1144.94321
[25] Plonka, G.; Tasche, M., Fast and numerically stable algorithms for discrete cosine transforms, Linear Algebra. Appl., 394, 1, 309-345 (2005) · Zbl 1072.65171
[26] Shao, X.; Johnson, A. G., Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations, Signal Process., 88, 6, 1313-1326 (2008) · Zbl 1186.94305
[29] Yang, Y.; Ihalainen, T.; Rinne, M.; Renfors, M., Frequency-domain equalization in single-carrier transmissionfilter bank approach, EURASIP J. Appl. Signal Process., 2007, 1, 135 (2007)
[30] Ihalainen, T.; Hidalgo Stitz, T.; Rinne, M.; Renfors, M., Channel equalization in filter bank based multicarrier modulation for wireless communications, EURASIP J. Adv. Signal Process. (2007), 10.1155/2007/49389 · Zbl 1168.94486
[31] Tonello, A.; D׳Alessandro, S.; Lampe, L., Cyclic prefix design and allocation in bit-loaded OFDM over power line communication channels, IEEE Trans. Commun., 58, 11, 3265-3276 (2010)
[34] Cañete, F. J.; Cortés, J. A.; Díez, L.; Entrambasaguas, J. T., A channel model proposal for indoor power line communications, IEEE Commun. Mag., 49, 12, 166-174 (2011)
[36] Cortés, J. A.; Díez, L.; Cañete, F. J.; Sánchez-Martínez, J. J., Analysis of the indoor broadband power-line noise scenario, IEEE Trans. Electromagn. Compat., 52, 4, 849-858 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.