×

A Runge-Kutta neural network-based control method for nonlinear MIMO systems. (English) Zbl 1418.93128

Summary: In this paper, a novel Runge-Kutta neural network (RK-NN)-based control mechanism is introduced for multi-input multi-output ( MIMO) nonlinear systems. The overall architecture embodies an online Runge-Kutta model which computes a forward model of the system, an adaptive controller with tunable parameters and an adjustment mechanism realized by separate online Runge-Kutta neural networks to identify the dynamics of each tunable controller parameter. Runge-Kutta identification block has the competency to approximate the time-varying parameters of the model and unmeasurable states of the controlled system. Thus, the strengths of radial basis function (RBF) neural network structure and Runge-Kutta integration method are combined in this structure. Adaptive MIMO proportional-integral-derivative (PID) controller is deployed in the controller block. The control performance of the proposed adaptive control method has been evaluated via simulations performed on a nonlinear three-tank system and Van de Vusse benchmark system for different cases, and the obtained results reveal that the RK-NN-based control mechanism and Runge-Kutta model attain good control and modelling performances.

MSC:

93C40 Adaptive control/observation systems
93A14 Decentralized systems
93C10 Nonlinear systems in control theory
93B30 System identification

Software:

ANFIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akhyar S, Omatu S (1993) Self-tuning PID control by neural networks. In: International joint conference on neural network (IJCNN’93). Nagoya
[2] AMIRA (2000) Lab Manual DTS200—laboratory setup three-tank system. Amira GmbH, Duisburg
[3] Aström KJ (1983) Theory and applications of adaptive control—a survey. Automatica 19(5):471-486 · Zbl 0537.93048 · doi:10.1016/0005-1098(83)90002-X
[4] Aström KJ, Hagglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, USA
[5] Aström KJ, Wittenmark B (2008) Adaptive control. Dover Publications, Mineola · Zbl 1163.93020
[6] Aström KJ, Borisson U, Ljung L, Wittenmark B (1977) Theory and applications of self-tuning regulators. Automatica 13(5):457-476 · Zbl 0374.93024 · doi:10.1016/0005-1098(77)90067-X
[7] Beyhan S (2013) Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems. ISA Trans 52(4):501-509 · doi:10.1016/j.isatra.2013.04.005
[8] Bouallégue S, Haggege J, Ayadi M, Benrejeb M (2012) PID-type fuzzy logic controller tuning based on particle swarm optimization. Eng Appl Artif Intell 25(3):484-493. https://doi.org/10.1016/j.engappai.2011.09.018 · doi:10.1016/j.engappai.2011.09.018
[9] Bishr M, Yang YG, Lee G (2000) Self-tuning PID control using an adaptive network based fuzzy inference system. Intell Autom Soft Comput 6(4):271-280 · doi:10.1080/10798587.2000.10642795
[10] Bobal V, Bohm J, Fessl J, Machacek J (2005) Digital self-tuning controllers. Advanced textbooks in control and signal processing. Springer, London
[11] Cetin M, Iplikci S (2015) A novel auto-tuning PID control mechanism for nonlinear systems. ISA Trans 58:292-308 · doi:10.1016/j.isatra.2015.05.017
[12] Chen H, Kremling A, Allgöwer F (1995) Nonlinear predictive control of a benchmark CSTR. In: European control conference (ECC’95). Rome
[13] Denai MA, Palis F, Zeghbib A (2004) ANFIS based modelling and control of non-linear systems: a tutorial. In: IEEE international conference on systems, man and cybernetics
[14] Efe, MO; Wilamowski, BM (ed.); Irwin, JD (ed.), Neural-network-based control (2011), Boca Raton
[15] Efe MO, Kaynak O (1999) A comparative study of neural network structures in identification of nonlinear systems. Mechatronics 9(3):287-300. https://doi.org/10.1016/S0957-4158(98)00047-6 · doi:10.1016/S0957-4158(98)00047-6
[16] Efe MO, Kaynak O (2000) A comparative study of soft-computing methodologies in identification of robotic manipulators. Robot Auton Syst 30(3):221-230 · doi:10.1016/S0921-8890(99)00087-1
[17] Engell S, Klatt KU (1993) Nonlinear control of a non-minimum-phase CSTR. In: American control conference. San Francisco
[18] Flynn D, McLoone S, Irwin GW, Brown MD, Swidenbank E, Hogg BW (1997) Neural control of turbogenerator systems. Automatica 33(11):1961-1973. https://doi.org/10.1016/S0005-1098(97)00142-8 · Zbl 0900.93215 · doi:10.1016/S0005-1098(97)00142-8
[19] Hagan MT, Demuth HB, De Jesus O (2002) An introduction to the use of neural networks in control systems. Int J Robust Nonlinear Control 12(11):959-985. https://doi.org/10.1002/rnc.727 · Zbl 1011.93003 · doi:10.1002/rnc.727
[20] Iplikci S (2006) Online trained support vector machines-based generalized predictive control of non-linear systems. Int J Adapt Control Signal Process 20(10):599-621. https://doi.org/10.1002/acs.919 · Zbl 1134.93418 · doi:10.1002/acs.919
[21] Iplikci S (2010a) A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int J Robust Nonlinear Control 20(13):1483-1501. https://doi.org/10.1002/rnc.1524 · Zbl 1204.93135 · doi:10.1002/rnc.1524
[22] Iplikci S (2010b) A support vector machine based control application to the experimental three-tank system. ISA Trans 49(3):376-386. https://doi.org/10.1016/j.isatra.2010.03.013 · doi:10.1016/j.isatra.2010.03.013
[23] Iplikci S (2013) Runge-Kutta model-based adaptive predictive control mechanism for non-linear processes. Trans Inst Meas Control 35(2):166-180 · doi:10.1177/0142331212438910
[24] Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665-685. https://doi.org/10.1109/21.256541 · doi:10.1109/21.256541
[25] Kravaris, C.; Niemiec, M.; Berber, R.; Brosilow, CB; Kravaris, C. (ed.); Berber, R. (ed.), Nonlinear model-based control of nonminimum-phase processes, 115-142 (1998), Dordrecht · doi:10.1007/978-94-011-5094-1_5
[26] Kulikov GY, Kulikova MV (2014) Accurate state estimation in the Van Der Vusse reaction. In: IEEE international conference on control applications (CCA). Nice
[27] Luenberger DG, Ye Y (2008) Linear and nonlinear programming. Springer, New York · Zbl 1207.90003 · doi:10.1007/978-0-387-74503-9
[28] Niemiec MP, Kravaris C (2003) Nonlinear model-state feedback control for nonminimum-phase processes. Automatica 39(7):1295-1302. https://doi.org/10.1016/S0005-1098(03)00103-1 · Zbl 1029.93031 · doi:10.1016/S0005-1098(03)00103-1
[29] Nørregard JB (2007) A critical discussion of the continuous-discrete extended Kalman filter. In: European congress of chemical engineering-6. Copenhagen
[30] Pham DT, Karaboga D (1999) Self-tuning fuzzy controller design using genetic optimisation and neural network modelling. Artif Intell Eng 13(2):119-130. https://doi.org/10.1016/S0954-1810(98)00017-X · doi:10.1016/S0954-1810(98)00017-X
[31] Sharkawy AB (2010) Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng Appl Artif Intell 23(7):1041-1052. https://doi.org/10.1016/j.engappai.2010.06.011 · doi:10.1016/j.engappai.2010.06.011
[32] Sung SW, Lee J, Lee IB (2009) Process identification and PID control. IEEE Press, Wiley, Singapore · doi:10.1002/9780470824122
[33] Theilliol D, Noura H, Ponsart JC (2002) Fault diagnosis and accommodation of a three-tank system based on analytical redundancy. ISA Trans 41(3):365-382. https://doi.org/10.1016/S0019-0578(07)60094-9 · doi:10.1016/S0019-0578(07)60094-9
[34] Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. The MIT Press, Cambridge · Zbl 1081.68703
[35] Uçak K, Günel GO (2017) Generalized self-tuning regulator based on online support vector regression. Neural Comput Appl 28(Suppl 1):775-801. https://doi.org/10.1007/s00521-016-2387-4 · doi:10.1007/s00521-016-2387-4
[36] Wanfeng S, Shengdun Z, Yajing S (2008) Adaptive PID controller based on online LSSVM identification. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2008). Xian
[37] Wang YJ, Lin CT (1998) Runge-Kutta neural network for identification of dynamical systems in high accuracy. IEEE Trans Neural Netw 9(2):294-307. https://doi.org/10.1109/72.661124 · doi:10.1109/72.661124
[38] Wang GJ, Fong CT, Chang KJ (2001) Neural-network-based self-tuning PI controller for precise motion control of PMAC motors. IEEE Trans Ind Electron 48(2):408-415 · doi:10.1109/41.915420
[39] Vojtesek J, Dostal P (2010) Adaptive control of chemical reactor. In: International conference cybernetics and informatics. Vysna Boca · Zbl 1317.93156
[40] Visioli A (2006) Practical PID control. Springer, London · Zbl 1122.93032
[41] Zhao XD, Yang HJ, Karimi HR, Zhu YZ (2016a) Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans Cybern 46(6):1337-1349. https://doi.org/10.1109/TCYB.2015.2441292 · doi:10.1109/TCYB.2015.2441292
[42] Zhao XD, Shi P, Zheng XL (2016b) Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems. IEEE Trans Cybern 46(6):1476-1483. https://doi.org/10.1109/TCYB.2015.2447153 · doi:10.1109/TCYB.2015.2447153
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.