×

Pseudo-exponential maps, variants, and quasiminimality. (English) Zbl 1522.03144

Summary: We give a construction of quasiminimal fields equipped with pseudo-analytic maps, generalizing Zilber’s pseudo-exponential function. In particular we construct pseudo-exponential maps of simple abelian varieties, including pseudo-\(\wp\)-functions for elliptic curves. We show that the complex field with the corresponding analytic function is isomorphic to the pseudo-analytic version if and only if the appropriate version of Schanuel’s conjecture is true and the corresponding version of the strong exponential-algebraic closedness property holds. Moreover, we relativize the construction to build a model over a fairly arbitrary countable subfield and deduce that the complex exponential field is quasiminimal if it is exponentially-algebraically closed. This property states only that the graph of exponentiation has nonempty intersection with certain algebraic varieties but does not require genericity of any point in the intersection. Furthermore, Schanuel’s conjecture is not required as a condition for quasiminimality.

MSC:

03C65 Models of other mathematical theories
03C75 Other infinitary logic
12L12 Model theory of fields
11J81 Transcendence (general theory)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] 10.2307/2373569 · Zbl 0258.14014 · doi:10.2307/2373569
[2] 10.1093/imrn/rnt057 · Zbl 1328.14071 · doi:10.1093/imrn/rnt057
[3] 10.1112/blms/bdt076 · Zbl 1386.03037 · doi:10.1112/blms/bdt076
[4] 10.1016/S0022-314X(02)00002-1 · Zbl 1067.11041 · doi:10.1016/S0022-314X(02)00002-1
[5] ; Bertrand, Arithmetic and Galois theories of differential equations. Sémin. Congr., 23, 1 (2011) · Zbl 1260.00026
[6] 10.1112/jlms.12014 · Zbl 1386.11086 · doi:10.1112/jlms.12014
[7] 10.1090/surv/019/01 · doi:10.1090/surv/019/01
[8] 10.1090/tran/7206 · Zbl 1428.03059 · doi:10.1090/tran/7206
[9] ; Droste, Proceedings of the International Conference on Algebra. Contemp. Math., 131, 49 (1992)
[10] 10.1007/s10977-007-9015-0 · Zbl 1200.14088 · doi:10.1007/s10977-007-9015-0
[11] 10.1016/0168-0072(93)90171-9 · Zbl 0804.03020 · doi:10.1016/0168-0072(93)90171-9
[12] 10.1017/S1474748014000425 · Zbl 1478.03070 · doi:10.1017/S1474748014000425
[13] 10.1016/j.apal.2007.04.003 · Zbl 1132.03035 · doi:10.1016/j.apal.2007.04.003
[14] 10.1007/s00029-009-0001-7 · Zbl 1263.12003 · doi:10.1007/s00029-009-0001-7
[15] 10.1112/blms/bdq044 · Zbl 1203.03050 · doi:10.1112/blms/bdq044
[16] 10.2178/jsl/1268917494 · Zbl 1192.03006 · doi:10.2178/jsl/1268917494
[17] 10.2140/ant.2013.7.943 · Zbl 1436.03201 · doi:10.2140/ant.2013.7.943
[18] 10.1016/j.apal.2014.06.002 · Zbl 1315.03056 · doi:10.1016/j.apal.2014.06.002
[19] ; Macintyre, Logic and algebra. Lecture Notes Pure Appl. Math., 180, 191 (1996) · Zbl 0891.12006
[20] 10.1112/blms/bdv096 · Zbl 1347.11036 · doi:10.1112/blms/bdv096
[21] 10.2178/jsl/1154698577 · Zbl 1112.03029 · doi:10.2178/jsl/1154698577
[22] ; Mumford, Abelian varieties. Tata Inst. Fundamental Res. Stud. Math., 5 (1970) · Zbl 0223.14022
[23] 10.1007/978-3-540-68521-0_4 · doi:10.1007/978-3-540-68521-0_4
[24] 10.1007/BF01405086 · Zbl 0235.14012 · doi:10.1007/BF01405086
[25] 10.1007/BF02761954 · Zbl 0552.03019 · doi:10.1007/BF02761954
[26] 10.1090/S0894-0347-96-00216-0 · Zbl 0892.03013 · doi:10.1090/S0894-0347-96-00216-0
[27] 10.1112/S0024610701002861 · Zbl 1030.11073 · doi:10.1112/S0024610701002861
[28] 10.1142/S0219061303000273 · Zbl 1070.03021 · doi:10.1142/S0219061303000273
[29] 10.1090/conm/380/07118 · doi:10.1090/conm/380/07118
[30] 10.1016/j.apal.2004.07.001 · Zbl 1076.03024 · doi:10.1016/j.apal.2004.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.