×

A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures. (English) Zbl 1384.74045

Summary: This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/rotation-based formulation.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math 11: 87–95 · Zbl 0267.73032
[2] Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32: 734–744 · Zbl 0467.73048 · doi:10.1007/BF00946983
[3] Simo J (1985) A finite strain beam formulation: the three-dimensional dynamic problem, part I. Comput Methods Appl Mech Eng 49: 55–70 · Zbl 0583.73037 · doi:10.1016/0045-7825(85)90050-7
[4] Simo J, Vu-Quoc L (1986) A three-dimensional finite-strain rod model, part II: computational aspects. Comput Methods Appl Mech Eng 58: 79–116 · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[5] Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26: 2403–2438 · Zbl 0662.73049 · doi:10.1002/nme.1620261105
[6] Simo J, Vu-Quoc L (1991) A geometrically exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27: 371–393 · Zbl 0731.73029 · doi:10.1016/0020-7683(91)90089-X
[7] Pimenta P, Yojo T (1993) Geometrically exact analysis of spatial frames. Appl Mech Rev 46(11): S118–S128 · doi:10.1115/1.3122626
[8] Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38: 3653–3673 · Zbl 0835.73074 · doi:10.1002/nme.1620382107
[9] Crisfield M, Jelenic G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc 455: 1125–1147 · Zbl 0926.74062 · doi:10.1098/rspa.1999.0352
[10] Jelenic G, Crisfield M (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171: 141–171 · Zbl 0962.74060 · doi:10.1016/S0045-7825(98)00249-7
[11] Iura M, Atluri S (1988) Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput Struct 29(5): 875–889 · Zbl 0666.73044 · doi:10.1016/0045-7949(88)90355-0
[12] Iura M, Atluri S (1989) On a consistent theory and variational formulation of finitely stretched and rotated 3-D space-curved beams. Comput Mech 4(3): 73–88 · Zbl 0666.73015 · doi:10.1007/BF00282411
[13] Quadrelli B, Atluri S (1996) Primal and mixed variational principles for dynamics of spatial beams. AIAA J 34(11): 2395–2401 · Zbl 0903.73081 · doi:10.2514/3.13407
[14] Quadrelli B, Atluri S (1998) Analysis of flexible multibody systems with spatial beams using mixed variational principles. Int J Numer Methods Eng 42: 1071–1090 · Zbl 0910.73078 · doi:10.1002/(SICI)1097-0207(19980730)42:6<1071::AID-NME400>3.0.CO;2-F
[15] Atluri S, Iura M, Vasudevan S (2001) A consistent theory of finite stretches and finite rotations, in space curved beams of arbitrary cross-section. Comput Mech 27: 271–281 · Zbl 1011.74041 · doi:10.1007/s004660100234
[16] Spring K (1986) Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech Mach Theory 21: 365–373 · doi:10.1016/0094-114X(86)90084-4
[17] Zupan E, Saje M, Zupan D (2009) The quaternion-based three-dimensional beam theory. Comput Methods Appl Mech Eng 198: 3944–3956 · Zbl 1231.74280 · doi:10.1016/j.cma.2009.09.002
[18] Bufler H (1993) Conservative systems, potential operators and tangent stiffness: reconsideration and generalization. Arch Appl Mech 63: 51–58 · Zbl 0767.73001 · doi:10.1007/BF00787909
[19] Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, West Sussex
[20] Ritto-Corrêa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parametrizarion of Reissner-Simo beam theory. Int J Numer Methods Eng 55(9): 1005–1032 · Zbl 1033.74027 · doi:10.1002/nme.532
[21] Ibrahimbegovic A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122: 11–26 · Zbl 0852.73061 · doi:10.1016/0045-7825(95)00724-F
[22] Pimenta PM (1996) Geometrically exact analysis of initially curved rods. Advances in computational techniques for structural engineering, pp 99–108
[23] Saje M, Turk G, Kalagasidu A, Vratanar B (1998) A kinematically exact finite element formulation of elastic-plastic curved beams. Comput Struct 67: 197–214 · Zbl 0962.74542 · doi:10.1016/S0045-7949(98)00046-7
[24] Zupan D, Saje M (2003) The three-dimensional beam theory: finite element formulation based on curvature. Comput Struct 81: 1875–1888 · Zbl 1043.74526 · doi:10.1016/S0045-7949(03)00208-6
[25] Kapania R, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30: 428–443 · Zbl 1038.74582 · doi:10.1007/s00466-003-0421-8
[26] Kapania R, Li J (2003) A formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations. Comput Mech 30: 444–459 · Zbl 1038.74635 · doi:10.1007/s00466-003-0422-7
[27] Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196: 4458–4478 · Zbl 1173.74352 · doi:10.1016/j.cma.2007.05.005
[28] Planinc I, Saje M (1999) A quadratically convergent algorithm for the computation of stability points: the application of the determinant of the tangent stiffness matrix. Comput Methods Appl Mech Eng 169: 89–105 · Zbl 1161.74494 · doi:10.1016/S0045-7825(98)00178-9
[29] Lens E, Cardona A (2008) A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics. Comput Struct 86: 47–63 · doi:10.1016/j.compstruc.2007.05.036
[30] Ibrahimbegovic A, Taylor R (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech Eng 191: 5159–5176 · Zbl 1023.74048 · doi:10.1016/S0045-7825(02)00442-5
[31] Betsch P, Steinmann P (2002) Frame-indifferent beam finite element based upon the geometrically exact beam theory. Int J Numer Methods Eng 54: 1775–1788 · Zbl 1053.74041 · doi:10.1002/nme.487
[32] Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34: 121–133 · Zbl 1138.74406 · doi:10.1007/s00466-004-0559-z
[33] Makinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70: 1009–1048 · Zbl 1194.74441 · doi:10.1002/nme.1892
[34] Ghosh S, Roy D (2008) Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Comput Methods Appl Mech Eng 198: 555–571 · Zbl 1228.74079 · doi:10.1016/j.cma.2008.09.004
[35] Jakobsen B (1994) The Sleipner accident and its causes. Eng Fail Anal 1(3): 193–199 · doi:10.1016/1350-6307(94)90018-3
[36] de Veubeke BF (1965) Stress analysis. Displacement and equilibrium models in the finite element method. Wiley, New York, pp 145–197
[37] Debongnie J, Zhong H, Beckers P (1995) Dual analysis with general boundary conditions. Comput Methods Appl Mech Eng 122: 183–192 · Zbl 0851.73057 · doi:10.1016/0045-7825(94)00726-4
[38] Washizu K (1982) Variational methods in elasticity and plasticity, 3rd edn. Pergamon Press, Oxford · Zbl 0498.73014
[39] Saje M (1990) A variational principle for finite planar deformation of straight slender elastic beams. Int J Solids Struct 26(8): 887–900 · Zbl 0719.73017 · doi:10.1016/0020-7683(90)90075-7
[40] Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39: 327–337 · Zbl 0825.73716 · doi:10.1016/0045-7949(91)90030-P
[41] Santos H, de Almeida JM (2010) An equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures. J Eng Mech 136(12): 1474–1490 · doi:10.1061/(ASCE)EM.1943-7889.0000190
[42] Zupan D, Saje M (2003) Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput Methods Appl Mech Eng 192: 5209–5248 · Zbl 1054.74065 · doi:10.1016/j.cma.2003.07.008
[43] Zupan D, Saje M (2004) Rotational invariants in finite element formulation of three-dimensional beam theories. Comput Struct 82: 2027–2040 · Zbl 1054.74065 · doi:10.1016/j.compstruc.2004.03.069
[44] Nukala P, White D (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Methods Appl Mech Eng 193: 2507–2545 · Zbl 1067.74582 · doi:10.1016/j.cma.2004.01.029
[45] Santos H, Pimenta P, de Almeida JM (2010) Hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Int J Non-Linear Mech 45(8): 809–820 · doi:10.1016/j.ijnonlinmec.2010.06.003
[46] Ritto-Corrêa M, Camotim D (2003) Work-conjugacy between rotation-dependent moments and finite rotations. Int J Solids Struct 40: 2851–2873 · Zbl 1049.74003 · doi:10.1016/S0020-7683(03)00078-7
[47] Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44: 103–118 · Zbl 1162.74386 · doi:10.1007/s00466-008-0358-z
[48] Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155: 273–305 · Zbl 0947.74060 · doi:10.1016/S0045-7825(97)00158-8
[49] Ogden R (1977) Inequalities associated with the inversion of elastic stress-deformation relations and their implication. Math Proc Camb Philos Soc 81: 313–324 · Zbl 0354.73023 · doi:10.1017/S030500410005338X
[50] Sander G (1971) High speed computing of elastic structures, vol 61. Application of the dual analysis principle. Les Congres et Colloques de l’Universite de Liege, pp 167–207
[51] Maunder E (1986) A composite triangular equilibrium element for the flexural analysis of plates. Eng Struct 8(3): 159–168 · doi:10.1016/0141-0296(86)90049-0
[52] Almeida J, Freitas J (1991) Alternative approaches to the formulation of hybrid equilibrium finite elements. Comput Struct 40: 1043–1047 · doi:10.1016/0045-7949(91)90336-K
[53] Almeida J, Freitas J (1992) Continuity conditions for finite element analysis of solids. Int J Numer Methods Eng 33: 845–853 · Zbl 0825.73828 · doi:10.1002/nme.1620330411
[54] Murakawa H, Atluri S (1977) On hybrid finite-element models in nonlinear solid mechanics. In: International conference on finite elements in nonlinear solid and structural mechanics · Zbl 0407.73038
[55] Atluri S, Murakawa H (1977) Finite elements in nonlinear mechanics, vol 1. On hybrid finite element models in nonlinear solid mechanics. Tapir Press, Trondheim, pp 3–41 · Zbl 0407.73038
[56] Murakawa H, Atluri S (1978) Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. ASME J Appl Mech 45(3): 539–547 · Zbl 0392.73038 · doi:10.1115/1.3424358
[57] Murakawa H, Atluri S (1979) Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. Part II: incompressible materials. ASME J Appl Mech 46: 71–78 · Zbl 0404.73075 · doi:10.1115/1.3424531
[58] Murakawa H, Reed K, Atluri S, Rubenstein R (1981) Stability analysis of structures via a new complementary energy method. Comput Struct 13: 11–18 · Zbl 0455.73041 · doi:10.1016/0045-7949(81)90104-8
[59] Seki W, Atluri S (1995) On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems. Finite Elem Anal Des 21: 75–110 · Zbl 0875.73312 · doi:10.1016/0168-874X(95)00028-X
[60] Gao D (1996) Complementary finite-element method for finite deformation nonsmooth mechanics. J Eng Math 30: 339–353 · Zbl 0857.73075 · doi:10.1007/BF00042755
[61] Peng Y, Liu Y (2009) Base force element method of complementary energy principle for large rotation problems. Acta Mech Sin 25: 507–515 · Zbl 1178.74171 · doi:10.1007/s10409-009-0234-x
[62] Sander G, Carnoy E (1978) Finite elements in nonlinear mechanics, vol. 1. Equilibrium and mixed formulations in stability analysis, Trondheim, pp 87–108 · Zbl 0435.73084
[63] Ibrahimbegovic A, Frey F (1995) Variational principles and membrane finite elements with drilling rotations for geometrically non-linear elasticity. Int J Numer Methods Eng 38: 1885–1900 · Zbl 0821.73070 · doi:10.1002/nme.1620381106
[64] Erkmen R, Mohareb M (2008) Buckling analysis of thin-walled open members–a finite element formulation. Thin-Walled Struct 46: 618–636 · doi:10.1016/j.tws.2007.12.002
[65] Santos H (2009) Duality in the geometrically exact analysis of frame structures. PhD thesis, Universidade Técnica de Lisboa
[66] Santos H, de Almeida JM (2011) Dual extremum principles for geometrically exact finite strain beams. Int J Non-Linear Mech 46: 151–158 · doi:10.1016/j.ijnonlinmec.2010.08.003
[67] Gao D, Strang G (1989) Dual extremum principles in finite deformation elastoplastic analysis. Acta Appl Math 17: 257–267 · Zbl 0732.73026 · doi:10.1007/BF00047073
[68] Gao D (2000) Duality principles in nonconvex systems: theory, methods and applications. Kluwer, London · Zbl 0940.49001
[69] Atluri S (1980) On some new general and complementary energy theorems for the rate problems in finite strain, classical elastoplasticity. J Struct Mech 8: 61–92 · doi:10.1080/03601218008907353
[70] Gao D, Onat E (1990) Rate variational extremum principles for finite elastoplasticity. Appl Math Mech 11(7): 659–667 · Zbl 0752.73027 · doi:10.1007/BF02017481
[71] Prathap G, Bhashyam G (1982) Reduced integration and the shear flexible beam element. Int J Numer Methods Eng 18: 195–210 · Zbl 0473.73084 · doi:10.1002/nme.1620180205
[72] Ibrahimbegovic A, Frey F (1993) Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams. Int J Numer Methods Eng 36: 3239–3258 · Zbl 0789.73069 · doi:10.1002/nme.1620361903
[73] Romero I, Armero F (2002) An objective finite element formulation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54: 1683–1716 · Zbl 1098.74713 · doi:10.1002/nme.486
[74] Argyris J, Dunne P, Malejannakis G, Scharpf D (1978) On large displacement-small strain analysis of structures with rotational degrees od freedom. Comput Methods Appl Mech Eng 15(1): 99–135 · Zbl 0413.73025 · doi:10.1016/0045-7825(78)90008-7
[75] Argyris J, Balmer H, Doltsinis J, Dunne P, Haase M, Kleiber M, Malejannakis G, Mlejnek H, Muller M, Scharpf D (1979) Finite element method–the natural approach. Comput Methods Appl Mech Eng 17(18(1): 1–106 · Zbl 0407.73058 · doi:10.1016/0045-7825(79)90083-5
[76] Simo J, Vu-Quoc L (1986) On the dynamics of flexible beams under large overall motions-the plane case: part I. J Appl Mech 53: 849–863 · Zbl 0607.73057 · doi:10.1115/1.3171870
[77] Ibrahimbegovic A, Shakourzadeh H, Batoz JL, Almikdad M, Guo YQ (1996) On the role of geometrically exact and second-order theories in buckling and post-buckling analysis of three-dimensional beam structures. Comput Struct 61(6): 1101–1114 · Zbl 0929.74032 · doi:10.1016/0045-7949(96)00181-2
[78] Timoshenko S, Gere J (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York
[79] Ziegler H (1968) Principles of structural stability. Blaisdell Publishing Company, Waltham · Zbl 0167.54403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.