×

The Cosserat surface as a shell model, theory and finite element formulation. (English) Zbl 0851.73038

Summary: Relying on the concept of a Cosserat continuum, the reduction of the three-dimensional equations of a shell body to two dimensions is carried out in a direct manner by considering the Cosserat continuum to be a two-dimensional surface. By that, a nonlinear shell theory, including transverse shear strains, with exact description of the kinematical fields is derived. The strain measures are taken to be the first and the second Cosserat deformation tensors allowing for an explicit use of a three parametric rotation tensor. Thus, inplane rotations, also called drilling degrees of freedom, are included in a natural way. The structure of the configuration space is discussed, and two possible definitions of it are given equipped once with a Killing metric and once with an Euclidean one. A partially mixed variational principle is proposed on the base of which an efficient hybrid finite element formulation, which does not exhibit locking phenomena, is developed. Various numerical examples of shell deformations at finite rotations, with excellent element performance, are presented.

MSC:

74K15 Membranes
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, Tensor Analysis and Applications (1987), Addison-Wesley, Springer-Verlag: Addison-Wesley, Springer-Verlag Berlin, Heidelberg, New York · Zbl 0875.58002
[2] Argyris, J. H., An excursion into large rotations, Comput. Methods Appl. Mech. Engrg., 32, 85-155 (1982) · Zbl 0505.73064
[3] Argyris, J. H.; Scharpf, D. W., The SHEBA family of shell elements for the matrix displacement method, Aeronaut. J. Roy. Aeronaut. Soc., 73, 423-426 (1969) · Zbl 0258.73038
[4] Axelrad, E. L., On vector description of arbitrary deformation of shells, Internat. J. Solids Structures, 17, 301-304 (1981) · Zbl 0464.73117
[5] Brickell, F.; Clark, R. S., Differentiable Manifolds (1970), Van Nostrand Reinhold Company: Van Nostrand Reinhold Company London · Zbl 0199.56303
[6] Chroscielewski, J.; Makowski, J.; Stumpf, H., Genuinely resultant shell finite elements accounting for geometric and material nonlinearity, Internat. J. Numer. Methods. Engrg., 35, 63-94 (1992) · Zbl 0780.73075
[7] Cohen, H.; DeSilva, K. N., Nonlinear theory of elastic directed surfaces, J. Math. Phys., 7, 960 (1966) · Zbl 0151.36904
[8] Choquet-Bruhat, Y.; DeWitt-Morette, C.; Dillard-Bleick, M., Analysis, Manifolds and Physics (1982), North-Holland: North-Holland Amsterdam, Part I
[9] Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P., Modern Geometry — Methods and Applications I (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0529.53002
[10] Ericksen, J. L.; Truesdell, C., Exact theory of stress and strain in rods and shells, Arch. Rat. Mech. Anal., 1, 295-323 (1957) · Zbl 0081.39303
[11] Eringen, A. C.; Kafadar, C. B., Polar field theories, (Eringen, A. C., Continuum Physics IV (1976), Academic Press: Academic Press New York), 1-73
[12] Fox, D. D.; Simo, J. C., A drill notation formulation for geometrically exact shells, Comput. Methods Appl. Mech. Engrg., 98, 329-343 (1992) · Zbl 0764.73050
[13] Green, A. E.; Naghdi, P. M.; Wainwright, W. L., A general theory of a Cosserat surface, Arch. Rat. Mech. Anal., 20, 287-308 (1965)
[14] Green, A. E.; Rivlin, R. S., Multipolar continuum mechanics, Arch. Rat. Mech. Anal., 17, 113-147 (1964) · Zbl 0133.17604
[15] Günther, W., Analoge Systeme von Schalengleichungen, Ing. Arch., 30, 160-186 (1961) · Zbl 0099.40601
[16] Harte, R.; Eckstein, U., Derivation of geometrically nonlinear finite shell elements via tensor notation, Internat. J. Numer. Methods Engrg., 23, 367-384 (1986) · Zbl 0585.73122
[17] Hestens, D., New Foundations for Classical Mechanics (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[18] Hjalmars, S., Non-linear micropolar theory, (Brulin, O.; Hsieh, R. K.T., Mechanics of Micropolar Media (1982), World Scientific: World Scientific Singapore)
[19] Hughes, T. J.R.; Brezzi, F., On drilling degrees of freedom, Comput. Methods Appl. Mech. Engrg., 72, 105-121 (1989) · Zbl 0691.73015
[20] Libai, A.; Simmonds, J. G., Nonlinear elastic shell theory, (Hutchinson; Wu, Advances in Applied Mechanics, 23 (1983), Academic Press: Academic Press New York), 271-371 · Zbl 0575.73079
[21] Makowski, J.; Stumpf, H., Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation, Internat. J. Solids Structures, 26, 353-368 (1990) · Zbl 0706.73044
[22] Naghdi, P. M., The theory of shells, (Flügge, S., Handbuch der Physik, VI/2 (1972), Springer-Verlag Berlin: Springer-Verlag Berlin Heidelberg, New York) · Zbl 0154.22602
[23] Pian, T. H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Internat. J. Numer. Methods Engrg., 20, 1685-1695 (1984) · Zbl 0544.73095
[24] Pietraszkiewicz, W.; Badur, J., Finite rotations in the description of continuum deformation, Internat. J. Engrg. Sci., 21, 1097-1115 (1983) · Zbl 0521.73033
[25] Ramm, E., Strategies for tracing the nonlinear response near limit points, (Wunderlich, W.; Stein, E.; Bathe, K.-J., Nonlinear Finite Element Analysis in Structural Mechanics (1981), Springer: Springer Berlin, Heidelberg, New York), 63-89 · Zbl 0474.73043
[26] Recke, L.; Wunderlich, W., Rotations as primary unknowns in the nonlinear theory of shells and corresponding finite element models, (Pietraszkiewicz, W., Finite Rotations in Structural Mechanics (1986), Springer: Springer Berlin, Heidelberg, New York), 239-258 · Zbl 0595.73084
[27] Reissner, E., Linear and nonlinear theory of shells, (Fung, Y. C.; Sechler, E. E., Thin Shell Structures (1974), Prentice Hall: Prentice Hall Englewood Cliffs), 29-44
[28] Reissner, E., A note on two-dimensional finite-deformation theories of shells, Internat. J. Non-Linear Mech., 17, 217-221 (1982) · Zbl 0492.73034
[29] Sansour, C., Verzerrungsmaβe einer Schalentheorie mit expliziter Einbeziehung endlicher Rotationen, ZAMM, 68, T245-T247 (1988)
[30] Sansour, C.; Bednarczyk, H., Shells at finite rotations with drilling degrees of freedom, theory and finite element formulation, (Glowinski, R., Computing Methods in Applied Sciences and Engineering (1991), Nova Sci. Publish., Inc: Nova Sci. Publish., Inc New York), 163-173
[31] Sansour, C.; Bufler, H., An exact finite rotation shell theory, its mixed variational formulation, and its finite element implementation, Internat. J. Numer. Methods Engrg., 34, 73-115 (1992) · Zbl 0760.73043
[32] Simo, J. C., The (symmetric) hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation, Comput. Methods Appl. Mech. Engrg., 96, 189-200 (1992) · Zbl 0761.73016
[33] Simo, J. C.; Fox, D. D., On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267-304 (1989) · Zbl 0692.73062
[34] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress rsultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory, Comput. Methods Appl. Mech. Engrg., 79, 21-70 (1990) · Zbl 0746.73015
[35] Simo, J. C.; Vu-Quoc, L., A three-dimensional finite-strain rod model. Part II: Geometric and computational aspects, Comput. Methods Appl. Mech. Engrg., 58, 79-116 (1986) · Zbl 0608.73070
[36] Smith, G. F., On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Internat. J. Engrg. Sci., 9, 899-916 (1971) · Zbl 0233.15021
[37] Spencer, A. J.M., Theory of invariants, (Eringen, C., Continuum Physics I (1971), Academic Press: Academic Press New York), 239-353
[38] Toupin, R. A., surfaces, Internat. J. Solids Structures, 12, 635-648 (1976)
[39] Zhilin, P. A., Mechanics of deformable directed surfaces, Internat. J. Solids Structures, 12, 635-648 (1976)
[40] Zienkiewicz, O. C., The Finite Element Method (1978), McGraw-Hill: McGraw-Hill New York · Zbl 0391.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.