×

Solving fuzzy fractional differential equations using fuzzy Sumudu transform. (English) Zbl 1415.34025

Summary: In this paper, we apply fuzzy Sumudu transform (FST) for solving linear fuzzy fractional differential equations (FFDEs) involving Caputo fuzzy fractional derivative. It is followed by suggesting a new result on the property of FST for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of linear FFDEs and finally, we demonstrate a numerical example.

MSC:

34A08 Fractional ordinary differential equations
44A05 General integral transforms
34A07 Fuzzy ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rahman, N. A. Abdul; Ahmad, M. Z., Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations, Entropy, 17, 4582-4601 (2015) · doi:10.3390/e17074582
[2] Agrawal, O. P., Solution for a fractional diffusion-wave equation defined in a bounded domain, Fractional order calculus and its applications, Nonlinear Dynam., 29, 145-155 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[3] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[4] Ahmad, M. Z.; Rahman, N. A. Abdul, Explicit solution of fuzzy differential equations by mean of fuzzy Sumudu transform, Int. J. Appl. Phys. Math., 5, 86-93 (2015)
[5] Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S., Solving fuzzy fractional differential equations using Zadeh’s extension principle, Scientific World J., 2013, 1-11 (2013) · doi:10.1155/2013/454969
[6] Ahmadian, A.; Suleiman, M.; Salahshour, S.; Baleanu, D., A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Difference Equ., 2013, 1-29 (2013) · Zbl 1380.34004 · doi:10.1186/1687-1847-2013-104
[7] Allahviranloo, T.; Ahmadi, M. B., Fuzzy Laplace transforms, Soft Comput., 14, 235-243 (2010) · Zbl 1187.44001 · doi:10.1007/s00500-008-0397-6
[8] Allahviranloo, T.; Armand, A.; Gouyandeh, Z., Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26, 1481-1490 (2014) · Zbl 1305.34004 · doi:10.3233/IFS-130831
[9] Allahviranloo, T.; Salahshour, S.; Abbasbandy, S., Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16, 297-302 (2012) · Zbl 1259.34009 · doi:10.1007/s00500-011-0743-y
[10] Arshad, S.; Lupulescu, V., On the fractional differential equations with uncertainty, Nonlinear Anal., 74, 3685-3693 (2011) · Zbl 1219.34004 · doi:10.1016/j.na.2011.02.048
[11] Bede, B.; Gal, S. G., Almost periodic fuzzy-number-valued functions, Fuzzy Sets and Systems, 147, 385-403 (2004) · Zbl 1053.42015 · doi:10.1016/j.fss.2003.08.004
[12] Bede, B.; Gal, S. G., Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151, 581-599 (2005) · Zbl 1061.26024 · doi:10.1016/j.fss.2004.08.001
[13] Bede, B.; Rudas, I. J.; Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Inform. Sci., 177, 1648-1662 (2007) · Zbl 1119.34003 · doi:10.1016/j.ins.2006.08.021
[14] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1412 (2000) · doi:10.1029/2000WR900031
[15] Bhrawy, A. H.; Zaky, M. A., Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40, 832-845 (2016) · Zbl 1446.34011 · doi:10.1016/j.apm.2015.06.012
[16] Bulut, H.; Baskonus, H. M.; Belgacem, F. B. M., The analytical solution of some fractional ordinary differential equations by the Sumudu transform method, Abstr. Appl. Anal., 2013, 1-6 (2013) · Zbl 1297.34005 · doi:10.1155/2013/203875
[17] Bulut, F.; Oruç, Ö.; Esen, A., Numerical Solutions of Fractional System of Partial Differential Equations By Haar Wavelets, Comput. Model. Eng. Sci., 108, 263-284 (2015)
[18] Chaurasia, V. B. L.; Dubey, R. S.; Belgacem, F. B. M., Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, Int. J. Math. Eng. Sci. Aero., 3, 179-188 (2012) · Zbl 1247.26011
[19] Chaurasia, V. B. L.; Singh, J., Application of Sumudu transform in Schödinger equation occurring in quantum mechanics, Appl. Math. Sci. (Ruse), 4, 2843-2850 (2010) · Zbl 1218.33005
[20] Friedman, M.; Ma, M.; Kandel, A., Numerical solutions of fuzzy differential and integral equations, Fuzzy modeling and dynamics, Fuzzy Sets and Systems, 106, 35-48 (1999) · Zbl 0931.65076 · doi:10.1016/S0165-0114(98)00355-8
[21] Garg, V.; Singh, K., An improved Grunwald-Letnikov fractional differential mask for image texture enhancement, Int. J. Adv. Comput. Sci. Appl., 3, 130-135 (2012)
[22] Glöckle, W. G.; Nonnenmacher, T. F., A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 46-53 (1995) · doi:10.1016/S0006-3495(95)80157-8
[23] Haydar, A. K., Fuzzy Sumudu transform for fuzzy nth-order derivative and solving fuzzy ordinary differential equations, Int. J. Sci. Res., 4, 1372-1378 (2015)
[24] Jarad, F.; Tas, K., Application of Sumudu and double Sumudu transforms to Caputo-fractional differential equations, J. Comput. Anal. Appl., 14, 475-483 (2012) · Zbl 1260.34013
[25] Jumarie, G., Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, J. Appl. Math. Comput., 24, 31-48 (2007) · Zbl 1145.26302 · doi:10.1007/BF02832299
[26] Kaleva, O., A note on fuzzy differential equations, Nonlinear Anal., 64, 895-900 (2006) · Zbl 1100.34500 · doi:10.1016/j.na.2005.01.003
[27] Katatbeh, Q. D.; Belgacem, F. B. M., Applications of the Sumudu transform to fractional differential equations, Nonlinear Stud., 18, 99-112 (2011) · Zbl 1223.44001
[28] Kaufmann, A.; Gupta, M. M., Introduction to fuzzy arithmetic, With a foreword by Lotfi A. Zadeh, Van Nostrand Reinhold Electrical/Computer Science and Engineering Series, Van Nostrand Reinhold Co., New York (1985) · Zbl 0588.94023
[29] Khastan, A.; Nieto, J. J.; Rodríguez-López, R., Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets and Systems, 177, 20-33 (2011) · Zbl 1250.34005 · doi:10.1016/j.fss.2011.02.020
[30] Kilbas, A. A.; Marzan, S. A., Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, (Russian); translated from Differ. Uravn., 41 (2005), 82-86, Differ. Equ., 41, 84-89 (2005) · Zbl 1160.34301 · doi:10.1007/s10625-005-0137-y
[31] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006) · Zbl 1092.45003
[32] Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq., 4, 1-11 (2001) · Zbl 0978.15022
[33] Lupulescu, V., Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, 265, 63-85 (2015) · Zbl 1361.26001 · doi:10.1016/j.fss.2014.04.005
[34] Ma, M.; Friedman, M.; Kandel, A., Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105, 133-138 (1999) · Zbl 0939.65086 · doi:10.1016/S0165-0114(97)00233-9
[35] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 23-28 (1996) · Zbl 0879.35036 · doi:10.1016/0893-9659(96)00089-4
[36] Mazandarani, M.; Kamyad, A. V., Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18, 12-21 (2013) · Zbl 1253.35208 · doi:10.1016/j.cnsns.2012.06.008
[37] Podlubny, I., Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA (1999) · Zbl 0918.34010
[38] Salahshour, S.; Allahviranloo, T.; Abbasbandy, S., Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17, 1372-1381 (2012) · Zbl 1245.35146 · doi:10.1016/j.cnsns.2011.07.005
[39] Sousa, E.; C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90, 22-37 (2015) · Zbl 1326.65111 · doi:10.1016/j.apnum.2014.11.007
[40] Spinelli, R. A., Numerical inversion of a Laplace transform, SIAM J. Numer. Anal., 3, 636-649 (1966) · Zbl 0166.13302 · doi:10.1137/0703056
[41] Stefanini, L.; Sorini, L.; Guerra, M. L., Parametric representation of fuzzy numbers and application to fuzzy calculus, Fuzzy Sets and Systems, 157, 2423-2455 (2006) · Zbl 1109.26024 · doi:10.1016/j.fss.2006.02.002
[42] Stynes, M.; Gracia, J. L., A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35, 698-721 (2015) · Zbl 1339.65097 · doi:10.1093/imanum/dru011
[43] Takači, D.; Takači, A.; Takači, A., On the operational solutions of fuzzy fractional differential equations, Fract. Calc. Appl. Anal., 17, 1100-1113 (2014) · Zbl 1312.34004 · doi:10.2478/s13540-014-0216-y
[44] Tranter, C. J., The use of the Mellin transform in finding the stress distribution in an infinite wedge, Quart. J. Mech. Appl. Math., 1, 125-130 (1948) · Zbl 0033.31203 · doi:10.1093/qjmam/1.1.125
[45] Watugala, G. K., Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech., 24, 35-43 (1993) · Zbl 0768.44003 · doi:10.1080/0020739930240105
[46] Wu, H.-C., The improper fuzzy Riemann integral and its numerical integration, Inform. Sci., 111, 109-137 (1998) · Zbl 0934.26014 · doi:10.1016/S0020-0255(98)00016-4
[47] Xu, J.-P.; Liao, Z.-G.; Hu, Z.-N., A class of linear differential dynamical systems with fuzzy initial condition, Fuzzy Sets and Systems, 158, 2339-2358 (2007) · Zbl 1128.37015 · doi:10.1016/j.fss.2007.04.016
[48] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 338-353 (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.