×

A discrete-time optimal filtering approach for non-linear systems as a stable discretization of the mortensen observer. (English) Zbl 1414.93192

Summary: In this work, we seek exact formulations of the optimal estimator and filter for a nonlinear framework, as the Kalman filter is for a linear framework. The solution is well established with the Mortensen filter in a continuous-time setting, but we seek here its counterpart in a discrete-time context. We demonstrate that it is possible to pursue at the discrete-time level an exact dynamic programming strategy and we find an optimal estimator combining a prediction step using the model and a correction step using the data. This optimal estimator reduces to the discrete-time Kalman estimator when the operators are in fact linear. Furthermore, the strategy that consists of discretizing the least square criterion and then finding the exact estimator at the discrete level allows to determine a new time-scheme for the Mortensen filter which is proven to be consistent and unconditionally stable, with also a consistent and stable discretization of the underlying Hamilton-Jacobi-Bellman equation.

MSC:

93E11 Filtering in stochastic control theory
93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] B.D.O. Anderson and J.B. Moore, Detectability and stabilizability of time-varying discrete-time linear systems. SIAM J. Control Optim. 19 (1981) 20-32. · Zbl 0468.93051 · doi:10.1137/0319002
[2] J.S. Baras and A. Bensoussan, On Observer Problems for Systems Governed by Partial Differential Equations. Technical Report. Maryland Univ., College Park (1987). · doi:10.21236/ADA187430
[3] J.S. Baras, A. Bensoussan and M.R. James, Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math. 48 (1988) 1147-1158. · Zbl 0658.93017
[4] J.S. Baras and A. Kurzhanski, Nonlinear Filtering: The Set-Membership (Bounding) and the H8 Techniques. Technical Report TR 1995-40, ISR (1995).
[5] R.E. Bellman, Dynamic Programming. Princeton University Press (1957). · Zbl 0077.13605
[6] A. Bensoussan, Filtrage Optimal des Systèmes Linéaires. Dunod (1971). · Zbl 0231.93022
[7] A. Bensoussan, Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992). · Zbl 0776.93094 · doi:10.1017/CBO9780511526503
[8] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite-Dimensional Systems. Vol. II of Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1993). · Zbl 0790.93016
[9] D.P. Bertsekas, Dynamics Programming and Optimal Control. 3rd edn. Athena Scientific, Vol. 1 (2005). · Zbl 1125.90056
[10] J. Blum, F.-X. Le Dimet and I.M. Navon, Data assimilation for geophysical fluids. Comput. Methods Atmos. Ocean 14 (2009) 385-441.
[11] O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55 (2013) 575-605. · Zbl 1269.65076
[12] H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 147-269. · Zbl 1118.65388
[13] L. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II. Existence theorems for weak solutions. Trans. Am. Math. Soc. 124 (1966) 413-430. · Zbl 0145.12501
[14] D. Chapelle, M. Fragu, V. Mallet and P. Moireau, Fundamental principles of data assimilation underlying the verdandi library: applications to biophysical model personalization within euheart. Med. Biol. Eng. Comput. 51 (2012) 1221-1233. · doi:10.1007/s11517-012-0969-6
[15] D. Chapelle, A. Gariah, P. Moireau and J. Sainte-Marie, A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – analysis, assessments and applications to parameter estimation. ESAIM: M2AN 47 (2013) 1821-1843. · Zbl 1295.65096 · doi:10.1051/m2an/2013090
[16] G. Chavent, Nonlinear Least Squares for Inverse Problems. Springer (2010). · doi:10.1007/978-90-481-2785-6
[17] Z. Chen, Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 182 (2003) 1-69.
[18] N. Cîndea, A. Imperiale and P. Moireau, Data assimilation of time under-sampled measurements using observers, the wave-like equation example. ESAIM: COCV 21 (2015) 635-669. · Zbl 1405.93045 · doi:10.1051/cocv/2014042
[19] H. Cox, On the estimation of state variables and parameters for noisy dynamic systems. IEEE Trans. Autom. Control (1964).
[20] A.L. Dontchev, Discrete approximations in optimal control, in Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control. Springer, New York, NY (1996) 59-80. · Zbl 0887.49026 · doi:10.1007/978-1-4613-8489-2_3
[21] W.H. Fleming, Deterministic nonlinear filtering. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997) 435-454. · Zbl 1002.93061
[22] W.H. Fleming and W.M. McEneaney, A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering. SIAM J. Control Optim. 38 (2000) 683-710. · Zbl 0949.35039 · doi:10.1137/S0363012998332433
[23] W.H. Fleming and R.W. Rischel, Deterministic and Stochastic Optimal Control. Springer-Verlag (1975). · Zbl 0323.49001 · doi:10.1007/978-1-4612-6380-7
[24] O. Hijab, Asymptotic nonlinear filtering and large deviations. Adv. Filter. Optim. Stoch. Control (1982) 170-176. · Zbl 0503.93057 · doi:10.1007/BFb0004536
[25] M.R. James and J.S. Baras, Nonlinear filtering and large deviations: a PDE-control theoretic approach. Stochastics 23 (1988) 391-412. · Zbl 0642.93059 · doi:10.1080/17442508808833500
[26] S.J. Julier and J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems. Proc. SPIE 3068 (1997) 182-193. · doi:10.1117/12.280797
[27] T. Kailath, A.H. Sayed and B. Hassibi, Linear Estimation. Prentice Hall, New Jersey, Vol. 1 (2000). · Zbl 0980.93077
[28] R.E. Kalman, Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 (1960) 102-119. · Zbl 0112.06303
[29] R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82 (1960) 35-45. · doi:10.1115/1.3662552
[30] R.E. Kalman, Mathematical description of linear dynamical systems. J. SIAM Control Ser. A 1 (1963) 152-192. · Zbl 0145.34301
[31] R.E. Kalman and R. Bucy, New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. 83 (1961) 95-108. · doi:10.1115/1.3658902
[32] A.J. Krener, A Lyapunov theory of nonlinear observers, in G.G Yin and Q. Zhang eds. Stochastic Analysis, Control, Optimization and Applications. Springer (1998) 409-420. · Zbl 0916.93019
[33] A.J. Krener, The convergence of the minimum energy estimator, in New Trends in Nonlinear Dynamics and Control, and their Applications. Springer, Berlin (2003). · Zbl 1203.93194
[34] A.J. Krener and A. Duarte, A hybrid computational approach to nonlinear estimation, in Proceedings of the 35th IEEE Decision and Control, 1996 (1996) 1815-1819. · doi:10.1109/CDC.1996.572831
[35] K. Kunisch, S. Volkwein and L. Xie, HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3 (2004) 701-722. · Zbl 1058.35061
[36] H.J. Kushner, Dynamical equations for optimal nonlinear filtering. J. Differ. Equ. 3 (1967) 179-190. · Zbl 0158.16801
[37] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38 (2010) 97-110.
[38] P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380-405. · Zbl 1243.93114 · doi:10.1051/cocv/2010006
[39] R.E. Mortensen, Maximum-likelihood recursive nonlinear filtering. J. Optim. Theory Appl. 2 (1968) 386-394. · Zbl 0177.36004
[40] I.M. Navon, Data assimilation for numerical weather prediction: a review, in S.K. Park and L. Xu eds. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg (2009).
[41] Y. Peng, X. Xiang and Y. Jiang, Nonlinear dynamic systems and optimal control problems on time scales. ESAIM: COCV 17 (2010) 654-681. · Zbl 1223.37105 · doi:10.1051/cocv/2010022
[42] D.T. Pham, J. Verron and M.C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16 (1998) 323-340.
[43] D. Simon, Optimal State Estimation: Kalman, \(H^{}\)∞, and Nonlinear Approaches. Wiley-Interscience (2006). · doi:10.1002/0470045345
[44] M. Vidyasagar, Nonlinear Systems Analysis. Prentice-Hall Internaltional Editions, Englewood Cliffs, NJ (1993). · Zbl 0900.93132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.