Birman, M. Sh.; Solomyak, M. Z. Asymptotic behavior of the spectrum of differential equations. (English) Zbl 0424.35069 J. Sov. Math. 12, 247-283 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 23 Documents MSC: 35P20 Asymptotic distributions of eigenvalues in context of PDEs 47F05 General theory of partial differential operators Keywords:asymptotic behavior of the spectrum; survey; asymptotics of the discrete spectrum; self-adjoint differential operators Citations:Zbl 0417.35061 PDF BibTeX XML Cite \textit{M. Sh. Birman} and \textit{M. Z. Solomyak}, J. Sov. Math. 12, 247--283 (1979; Zbl 0424.35069) Full Text: DOI OpenURL References: [1] É. Abdukadyrov, ”On the Green function of the Sturm-Liouville equation with operator coefficients,” Dokl. Akad. Nauk SSSR,195, No. 3, 519–522 (1970). · Zbl 0252.47046 [2] É. Abdukadyrov, ”The asymptotic distribution of the eigenvalues of the operator Sturm-Liouville problem,” Dokl. Akad. Nauk Uzb. SSR, No. 12, 3–5 (1970). · Zbl 0252.47046 [3] É. Abdukadyrov, ”The asymptotic distribution of the eigenvalues of a certain differential operator,” Tr. Samarkand. Univ., No. 244, 11–15 (1974). [4] B. I. Aleksandriiskii, ”Asymptotics of the positive eigenvalues of linear integrodifferential equations of second order,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 3–9 (1973). [5] R. A. Aleksandryan, Yu. M. Berezanskii, V. A. Il’in, and A. G. Kostyuchenko, ”Some questions in the spectral theory for partial differential equations,” in: Partial Differential Equations [in Russian], Nauka, Moscow (1970), pp. 3–35. [6] O. D. Apyshev and M. Otelbaev, ”On the classical formula for the distribution of the eigenvalues of the Sturm-Liouville operator,” Kaz. SSR, Fylym Akad. Khabarlary, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat., No. 3, 24–28 (1975). · Zbl 0446.47039 [7] V. I. Arnol’d, ”Modes and quasimodes,” Funkts. Analiz Prilozhen.,6, No. 2, 12–20 (1972). [8] V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974). [9] A. A. Arsen’ev, ”Asymptotics of the spectral function of the Schrödinger equation” Zh. Vychisl. Mat. Mat. Fiz.,7, No. 6, 1298–1319 (1967). [10] G. I. Aslanov and Sh. K. Baimov, ”The distribution of the eigenvalues of some non-self-adjoint operators,” Az. SSR Elmler Akad. Kheberleri. Fiz.-Tekh. ve rijazijjat elmleri ser., Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 6, 59–62 (1974). [11] A. G. Aslanyan, Z. N. Kuzina, V. B. Lidskii, and V. N. Tulovskii, ”Distribution of the eigenfrequencies of a thin elastic shell of arbitrary shape,” Prikl. Mat. Mekh.,37, 604–617 (1973). [12] A. G. Aslanyan and V. B. Lidskii, Distribution of Eigenfrequencies of Thin Elastic Shells [in Russian], Nauka, Moscow (1974). [13] A. G. Aslanyan and V. N. Tulovskii, ”Asymptotic distribution of eigenfrequencies of elastic shells,” Dokl. Akad. Nauk SSSR,208, No. 4, 801–804 (1973). [14] V. M. Babich, ”On the question of the asymptotics of quasieigenvalues of exterior problems for the Laplace operator,” in: Problems of Mathematical Physics [in Russian], No. 2, Leningrad State Univ. (1967), pp. 7–14. [15] V. M. Babich, ”Eigenfunctions concentrated in a neighborhood of a closed geodesic,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,9, 15–63 (1968). · Zbl 0207.11001 [16] V. M. Babich, ”On the proper oscillations of a multilayer resonator,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,15, 9–46 (1969). · Zbl 0231.35043 [17] V. M. Babich, ”Application of methods of the mathematical theory of diffraction to the asymptotics of the eigenvalues and eigenfunctions of the Laplace operator,” in: Partial Differential Equations [in Russian], Nauka, Moscow (1970), pp. 36–37. [18] V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of the Diffraction of Short Waves [in Russian], Nauka, Moscow (1972). · Zbl 0255.35002 [19] V. M. Babich and V. F. Lazutkin, ”On eigenfunctions concentrated in a neighborhood of a closed geodesic,” in: Problems of Mathematical Physics [in Russian], No. 2, Leningrad State Univ. (1967), pp. 15–25. · Zbl 0164.13601 [20] Sh. K. Baimov, ”On the distribution of the eigenvalues of the Schrödinger operator in unbounded domains,” Inst. Mat. Mekh., Akad. Nauk Az. SSR, Baku, 13 (1971). [21] Sh. K. Baimov, ”Asymptotics of the number of eigenvalues of the Schrödinger operator in domains with infinite boundaries,” in: Materials of the Scientific Conference of Aspirants Akad. Nauk Az. SSR, Fiz.-Tekh. Mat. Nauk, Élm, Baku (1973), pp. 12–21. [22] Sh. K. Baimov, ”Distribution of the eigenvalues of some elliptic operators in unbounded domains,” Meruzeler Azerb. SSR Elmler Akad., Dokl. Akad. Nauk Azerb. SSR,30, No. 9, 7–10 (1974). · Zbl 0303.35062 [23] M. Bairamogly, ”Asymptotics of the number of eigenvalues of ordinary differential operators with operator coefficients,” in: Functional Analysis and Its Applications, Élm Baku (1971), pp. 144–166. [24] G. I. Bass, ”Asymptotics of the spectral function of elliptic operators in a bounded domain,” Mat. Zametki,5, No. 2, 245–251 (1969). [25] V. P. Belorud’ and A. G. Kostyuchenko, ”On the density of the spectrum of the Sturm-Liouville operator,” Usp. Mat. Nauk.,28, No. 2, 227–228 (1973). [26] Yu. M. Berezanskii, ”Survey of the spectral theory of self-adjoint differential and difference operators,” Tr. Sem. Funkts. Anal., Inst. Mat. Akad. Nauk Ukr. SSR, Nos. 2, 3, 135 (1970). [27] F. A. Berezin, ”Wick and anti-Wick symbols of operators,” Mat. Sb.,86, No. 4, 578–610 (1971). [28] F. A. Berezin, ”Convariant and contravariant symbols of operators,” Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 5, 1134–1167 (1972). [29] O. V. Besov, V. P. Il’in, L. D. Kudryavtsev, P. I. Lizorkin, and S. M. Nikol’skii, ”Theory of imbeddings of classes of differentiable functions of several variables,” in: Partial Differential Equations [in Russian], Nauka, Moscow (1970), pp. 38–63. [30] M. Sh. Birman, ”On the spectrum of singular boundary value problems,” Mat. Sb.,55, No. 2, 125–174 (1961). [31] M. Sh. Birman and V. V. Borzov, ”On the asymptotics of the discrete spectrum of some singular differential operators,” in: Probl. Mat. Fiz., No. 5, Leningrad. Univ., Leningrad (1971), pp. 24–38. [32] M. Sh. Birman and M. Z. Solomyak, ”Piecewise polynomial approximations of functions of the classes Wp{\(\alpha\)},” Mat. Sb.,73, No. 3, 331–355 (1967). · Zbl 0173.16001 [33] M. Sh. Birman and M. Z. Solomyak ”On the leading term of the asymptotic spectral expression for nonsmooth elliptic problems,” Funkts. Analiz Prilozhen.,4, No. 4, 1–13 (1970). · Zbl 0207.03902 [34] M. Sh. Birman and M. Z. Solomyak, ”On the asymptotics of the spectrum of nonsmooth elliptic equations,” Funkts. Analiz Prilozhen.,5, No. 1, 69–70 (1971). · Zbl 0226.35072 [35] M. Sh. Birman and M. Z. Solomyak, ”Spectral asymptotics of nonsmooth elliptic operators,” Dokl. Akad. Nauk SSSR,205, No. 2, 267–270 (1972). · Zbl 0251.35075 [36] M. Sh. Birman and M. Z. Solomyak, ”Spectral asymptotics of nonsmooth elliptic operators. I, Tr. Mosk Mat. Obshch.,27 3–52 (1972). · Zbl 0251.35075 [37] M. Sh. Birman and M. Z. Solomyak, ”Spectral asymptotics of nonsmooth elliptic operators. II,” Tr. Mosk. Mat. Obshch.,28, 3–34 (1973). · Zbl 0281.35079 [38] M. Sh. Birman and M. Z. Solomyak, ”Quantitative analysis in Sobolev’s imbedding theorems and applications to spectral theory,” in: Desyataya Mat. Shkola, Kiev (1974), pp. 5–189. [39] M. Sh. Birman and M. Z. Solomyak, ”On a ’model’ nonelliptic spectral problem,” Vestn. Leningr. Univ., No. 1, 39–45 (1975). · Zbl 0296.35067 [40] K. Kh. Boimatov, ”Asymptotics of the spectrum of an operator differential equation,” Usp. Mat. Nauk,28, No. 5, 207–208 (1973). [41] K. Kh. Boimatov, ”The Sturm-Liouville operator with a matrix potential,” Mat. Zametki,16, No. 6, 921–932 (1974). [42] K. Kh. Boimatov, ”Asymptotics of the spectrum of the Schrödinger operator,” Differents. Uravn.,10, No. 11, 1939–1945 (1974). · Zbl 0292.35063 [43] K. Kh. Boimatov, ”Distribution of the eigenvalues of elliptic operators,” Dokl. Akad. Nauk SSSR,221, No. 2, 265–268 (1975). [44] V. V. Borzov, ”On quantitative characteristics of singular measures,” in: Probl. Mat. Fiz., No. 4, Leningrad. Univ., Leningrad (1970), pp. 42–47. · Zbl 0226.28003 [45] V. V. Borzov, ”On some applications of piecewise approximations of a functions of the Laplace operator,” Differents. Uravn.,1, No. 11, 499–501 (1965). [46] V. V. Borzov, ”Piecewise polynomial approximations of functions of the classes \(\mathop W\limits^ \circ _{p^r } \) and Lq with respect to an infinite measure,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 19–28 (1973). [47] F. G. Bulaevskaya-Maslova, ”On asymptotic estimates of the spectral function of the Laplace operator,” Differents. Uravn.,1, No. 71, 1509–1524 (1965). [48] V. S. Buldyrev, ”Short wave asymptotics of eigenfunctions of the Helmholtz equation,” Dokl. Akad. Nauk SSSR,163, No. 4, 853–856 (1965). [49] V. S. Buldyrev, ”Asymptotics of the eigenfunctions of the Helmholtz equation for plane convex domains,” Vestn. Leningr. Univ., Ser. Fiz. Khim.,22, No. 4, 38–51 (1965). [50] V. S. Buldyrev, ”Propagation of waves near the curved surface of an inhomogeneous body,” in: Probl. Mat. Fiz., No. 2, Leningrad Univ., Leningrad (1967), pp. 61–84. [51] V. S. Buldyrev, ”Asymptotics of solutions of the wave equation concentrated near the axis of a plane wave guide in an inhomogeneous medium,” in: Probl. Mat. Fiz., No. 3, Leningrad. Univ., Leningrad (1968), pp. 5–30. [52] V. S. Buldyrev and M. M. Popov, ”Application of the ray method to the computation of the eigenfrequencies of multimirror resonators,” Opt. Spektrosk.,20, No. 5, 905–908 (1966). [53] V. S. Buslaev, ”Trace formulas and some asymptotic estimates of the resolvent kernel for the Schrödinger operator in three-dimensional space,” in: Probl. Mat. Fiz., No. 1, Leningrad Univ., Leningrad (1966), pp. 82–101. [54] V. S. Buslaev, ”Scattered plane waves, spectral asymptotics, and trace formulas in exterior problems,” Dokl. Akad. Nauk SSSR,197, No. 5, 999–1002 (1971). · Zbl 0224.47023 [55] V. S. Buslaev, ”Local spectral asymptotics of the Green function in exterior problems for the Schrödinger operator,” Vestn. Leningr. Univ., No. 1, 55–60 (1975). · Zbl 0306.47005 [56] V. F. Butuzov, A. B. Vasil’eva, and V. M. Fedoryuk, ”Asymptotic methods in the theory of ordinary differential equations,” Itogi Nauki, Mat. Analiz, 1967 (in: Itogi Nauki VINITI AN SSSR), Moscow (1969), pp. 5–73. [57] V. P. Bykov, ”Geometrical optics of three-dimensional oscillations in open resonators,” in: Élektronika Bol’shikh Moshchnostei, No. 4, Nauka (1965), pp. 66–92. [58] L. A. Vainshtein, ”Ray flows on the triaxial ellipsoid,” in: Élektronika Bol’shikh Moshchnostei, No. 4, Nauka (1965), pp. 93–105. [59] I. L. Vulis, ”Spectral asymptotics of degenerate polyharmonic operators,” Dokl. Akad. Nauk SSSR,219, No. 5, 1049–1052 (1974). · Zbl 0318.35067 [60] I. L. Vulis and M. Z. Solomyak, ”Spectral asymptotics of degenerate elliptic operators,” Dokl. Akad. Nauk SSSR,207, No. 2, 262–265 (1972). · Zbl 0268.35070 [61] I. L. Vulis and M. Z. Solomyak, ”Spectral asymptotics of the degenerate Steklov problem,” Vestn. Leningr. Univ., No. 19, 148–150 (1973). [62] I. L. Vulis and M. Z. Solomyak, ”Spectral asymptotics of degenerate elliptic operators of second order,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 6, 1362–1392 (1974). [63] M. G. Gasymov, ”On the distribution of eigenvalues of a self-adjoint ordinary differential operator,” Dokl. Akad. Nauk SSSR,186, No. 4, 753–756 (1969). [64] M. M. Gekhtman, ”On the question of the spectrum of self-adjoint extensions of a symmetric semibounded operator,” Dokl. Akad. Nauk SSSR,186, No. 6, 1250–1252 (1969). [65] M. M. Gekhtman, ”Study of the spectrum of some nonclassical self-adjoint extensions of the Laplace operator,” Funkts. Anal. Ego Prilozhen.,4, No. 4, 72 (1970). · Zbl 0225.35076 [66] A. D. Gol’din, ”Asymptotics of the eigenvalues of self-adjoint extensions of the Schrödinger operator in a higher dimensional bounded domain,” Vestn. Mosk. Univ., Mat., Mekh., No. 6, 26–33 (1972). [67] M. L. Gorbachuk, ”Self-adjoint boundary value problems for a differential equation of second order with unbounded operator coefficients,” Funkts. Analiz Prilozhen.,5, No. 1, 10–21 (1971). [68] M. L. Gorbachuk and V. I. Gorbachuk, ”On some classes of boundary value problems for the Sturm-Liouville equation with an operator potential,” Ukr. Mat. Zh.,24, No. 3, 291–305 (1972). · Zbl 0245.34050 [69] V. N. Gorchakov, ”On the asymptotic properties of the spectral function of hypoelliptic operators,” Dokl. Akad. Nauk SSSR,160, No. 4, 746–749 (1965). · Zbl 0143.13401 [70] A. F. Goryunov, ”On the question of the asymptotic distribution of the eigenvalues of degenerate elliptic operators of second order,” Differents. Uravn.,6, No. 12, 2214–2223 (1970). · Zbl 0226.35073 [71] A. F. Goryunov, ”Asymptotic formulas for the eigenvalues of elliptic operators of second order which are degenerate on the axis of a cylinder,” Differents. Uravn.,6, No. 11, 2041–2053 (1970). [72] A. F. Goryunov, ”An estimate of the growth of eigenvalues of a problem with the parameter in the boundary condition,” Differents. Uravn.,10, No. 5, 879–889 (1974). · Zbl 0301.35072 [73] S. I. Grinberg, ”Some asymptotic formulas for the spectra of the first and third boundary value problems,” in: Theory of Functions, Functional Analysis, and Their Applications [in Russian], Resp. Nauchn. Sb., No. 3, 117–134 (1966). [74] S. I. Grinberg, ”Some asymptotic formulas for the spectra of the third boundary value problem related to the variation of a function contained in the boundary condition,” Dokl. Akad. Nauk SSSR,174, No. 4, 1253–1256 (1967). [75] S. I. Grinberg, ”A trace formula for the Schrödinger equation in a finite domain,” Mat. Zametki,1, No. 4, 451–460 (1967). [76] A. D. Donkov, ”On the asymptotics of the eigenvalues of an equation related to the modified Mathieu equation,” Godishn. Sofiisk. Univ. Fiz. Fak., 64–65, 1–6, 1970–1972, (1973). [77] A. A. Esipov, ”On the asymptotics of an eigenvalue problem for a long segment,” in: Communications of the Third Conference of the Rostov Scientific and Mathematical Society. I, Rostov-on-Don (1969), pp. 1–9. [78] A. A. Esipov and V. I. Yudovich, ”Limiting behavior of the eigenvalues of boundary value problems in unboundedly expanding domains,” Zh. Vychisl. Mat. Mat. Fiz.,13, No. 2, 412–432 (1973). · Zbl 0258.47036 [79] A. A. Esipov and V. I. Yudovich, ”Rayleigh’s principle and the asymptotics of eigenvalues,” in: Proceedings of the Fourth All-Union Seminar on Numerical Methods in the Mechanics of Viscous Fluid, Riga, 1972, Novosibirsk (1973), pp. 101–104. [80] A. A. Esipov and V. I. Yudovich, ”On the asymptotics of the eigenvalues of boundary value problems in long cylinders”, Izv. Sev-Kavkaz. Nauch. Tsentra Vysshei Shkoly. Ser. Estestv. Nauk, No. 4, 103–105 (1973). [81] A. A. Esipov and V. I. Yudovich, ”Asymptotics of the eigenvalues of the first boundary value problem for ordinary differential equations on a long segment,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 2, 342–349 (1974). · Zbl 0298.34019 [82] G. V. Zhdanova, ”Asymptotics of the eigenvalues of a self-adjoint singular operator of order 2n,” Differents. Uravn.,6, No. 5, 838–851 (1970). · Zbl 0217.40102 [83] G. V. Zhdanova, ”Asymptotic series for eigenvalues and eigenfunctions of self-adjoint operators,” Differents. Uravn.,7, No. 1, 603–614 (1971). [84] V. A. Il’in, ”Problems of localization and convergence for Fourier series in fundamental systems of functions of the Laplace operator,” Usp. Mat. Nauk,23, No. 2, 60–120 (1968). [85] V. A. Il’in, ”On the character of the spectrum of self-adjoint nonnegative extensions of elliptic operators and on precise conditions for convergence and Riesz summability of Fourier series of various classes of functions,” Mat. Zametki,7, No. 4, 515–523 (1970). [86] V. A. Il’in, ”On expansion in eigenfunctions of arbitrary nonnegative self-adjoint extensions of some elliptic operators,” in: International Congress of Mathematicians in Nice, 1970, Nauka, Moscow (1972), pp. 102–110. [87] V. A. Il’in and A. F. Filippov, ”On the character of the spectrum of a self-adjoint extension of the Laplace operator in a bounded domain (fundamental systems of function with an arbitrarily prescribed sequence of fundamental numbers),” Dokl. Akad. Nauk SSSR,191, No. 2, 267–269 (1970). [88] R. S. Ismagilov, ”On the asymptotics of the spectrum of a differential operator in a space of vector-valued functions,” Mat. Zametki,9, No. 6, 667–675 (1971). [89] V. N. Karpushkin, ”On the asymptotics of the eigenvalues of symmetric manifolds and on the ’most probable’ representations of finite groups,” Vestn. Mosk. Univ. Mat. Mekh., No. 2, 9–13 (1974). [90] V. V. Katrakhov, ”On asymptotic properties of the spectral function of singular differential operators,” Dokl. Akad. Nauk SSSR,214, No. 2, 272–275 (1974). · Zbl 0296.35063 [91] V. V. Katrakhov, ”Asymptotics of the spectral function of some singular differential operators,” Tr. NII Mat. Voronezh. Univ., No. 14, 32–40 (1974). [92] I. S. Kats, ”Density of the spectrum of the string,” Dokl. Akad. Nauk SSSR,211, No. 3, 520–523 (1973). [93] M. Kac, Probability and Related Topics in Physical Sciences, Am. Math. Soc. (1959). · Zbl 0087.33003 [94] I. A. Kipriyanov, ”The asymptotic distribution of the eigenvalues and eigenfunctions of a class of singular elliptic operators,” Tr. Mat. Inst. Akad. Nauk SSSR,117, 159–179 (1972). [95] V. R. Kogan, ”Asymptotics of the Laplace-Beltrami operator on the unit sphere Sn,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,12, No. 11, 1675–1680 (1969). [96] V. R. Kogan, ”Asymptotics of the spectrum of the Laplace-Beltrami operator in an n-dimensional ball of En,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,12, No. 11, 1681–1683 (1969). [97] V. R. Kogan and A. D. Krakhnov, ”Asymptotics of the eigenvalues and eigenfunctions of the Laplace operator on a compact Riemannian manifold,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,15, No. 3, 448–453 (1972). [98] A. N. Kozhevnikov, ”On the distribution of the spectrum of a differential operator,” Vestn. Mosk. Univ., Mat. Mekh., No. 2, 11–17 (1971). · Zbl 0215.17004 [99] A. N. Kozhevnikov, ”On the asymptotics of the eigenvalues and the completeness of the root vectors of an operator generated by a boundary value problem with a parameter in the boundary condition,” Dokl. Akad. Nauk SSSR,200, No. 6, 1273–1276 (1971). [100] A. N. Kozhevnikov, ”Spectral problems for pseudodifferential systems which are elliptic in the sense of Douglis-Nirenberg and their applications,” Mat. Sb.,92, No. 1, 60–88 (1973). [101] N. M. Kostenko, ”Asymptotics of the eigenvalues of an anharmonic oscillator,” Mat. Sb.,81, No. 2, 163–175 (1970). · Zbl 0215.44101 [102] N. M. Kostenko, ”On the spectrum of a system of differential equations,” Ukr. Mat. Zh.,22, No. 2, 163–173 (1970). · Zbl 0215.44101 [103] A. G. Kostyuchenko, ”Asymptotic distribution of eigenvalues of elliptic operators,” Dokl. Akad. Nauk SSSR,158, No. 1, 41–44 (1964). [104] A. G. Kostyuchenko, ”Distribution of the eigenvalues for singular differential operators,” Dokl. Akad. Nauk SSSR,168, No. 1, 21–24 (1966). · Zbl 0163.13401 [105] A. G. Kostyuchenko, ”Asymptotic behavior of the spectral function of a singular differential operator of order 2m,” Dokl. Akad. Nauk SSSR,168, No. 2, 276–279 (1966). · Zbl 0156.31202 [106] A. G. Kostyuchenko, ”On some spectral properties of differential operators,” Mat. Zametki,1, No. 3, 365–378 (1967). [107] A. G. Kostyuchenko, ”Asymptotic behavior of the spectral function of self-adjoint elliptic operators,” in: Fourth Mathematical School, Kiev (1968), pp. 42–117. [108] A. G. Kostyuchenko and B. M. Levitan, ”On the asymptotic behavior of the eigenvalues of the operator Sturm-Liouville problem,” Funkts. Analiz Prilozhen.,1, No. 1, 86–96 (1967). · Zbl 0168.12302 [109] M. G. Krein, ”Determination of the density of a string on the basis of the spectrum of its frequencies,” Dokl. Akad. Nauk SSSR,76, No. 2, 345–348 (1951). [110] S. S. Kritskaya, ”Asymptotic formulas for eigenvalues and eigenfunctions of problems of Sturm-Liouville type,” Differents. Uravn.,5, No. 5, 967–970 (1969). · Zbl 0169.41901 [111] S. S. Kritskaya, ”Mathematical consideration of the problem on the transverse vibrations of a rod with free bearing ends taking account of the rotational inertia,” in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications, Dnepropetrovsk (1972), pp. 139–142. [112] S. S. Kritskaya, ”Eigenvalues and eigenfunctions of a linear problem of fourth order with a parameter in the boundary condition,” in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications [in Russian], No. 5, Dnepropetrovsk (1974), pp. 176–178. [113] S. S. Kritskaya and D. I. Rogach, ”On a linear eigenvalue problem of fourth order,” in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications [in Russian], No. 4, Dnepropetrovsk (1973), pp. 154–160. [114] N. V. Kuznetsov, ”The asymptotic distribution of the eigenfrequencies of a plane membrane in the case of separated variables,” Differents. Uravn.,2, No. 10, 1385–1402 (1966). · Zbl 0202.25201 [115] N. V. Kuznetsov and B. V. Fedosov, ”An asymptotic formula for the eigenvalues of the circular membrane,” Differents. Uravn.,1, No. 12, 1682–1685 (1965). [116] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley (1953). · Zbl 0051.28802 [117] V. F. Lazutkin, ”Asymptotics of the eigenfunctions of the Laplace operator concentrated near the boundary of a domain,” Zh. Vychisl. Mat. Mat. Fiz.,7, No. 6, 1237–1249 (1967). · Zbl 0183.18302 [118] V. F. Lazutkin, ”A formula for the eigenfrequencies of a nonconfocal resonator with cylindrical mirrors with account of the aberration of the mirrors,” Opt. Spektrosk.,24, No. 3, 453–454 (1968). [119] V. F. Lazutkin, ”Construction of an asymptotic series for the eigenfunctions of bouncing-ball type,” Tr. Mat. Inst. Akad. Nauk SSSR,95, 106–118 (1968). · Zbl 0211.13802 [120] V. F. Lazutkin, ”Spectral degeneracy and ’small denominators’ in the asymptotics of eigenfunctions on ’bouncing-ball’ type,” Vestn. Leningr. Univ.,7, 23–24 (1969). [121] V. F. Lazutkin, ”Asymptotics of a sequence of eigenfunctions of the Laplace operator corresponding to a closed invariant curve of the ’billiard problem,”’ in: Probl. Mat. Fiz., No. 5, Leningrad Univ., Leningrad (1971), pp. 72–91. [122] V. F. Lazutkin, ”Short wave asymptotics of the eigenfrequencies of the membrane. A sequence of eigenfrequencies constructed according to a closed smooth invariant curve of the billiard problem,” Proceedings of the Fifth All-Union Symposium on Diffraction and Wave Propagation [in Russian], Nauka, Leningrad (1971), pp. 134–143. [123] V. F. Lazutkin, ”On the asymptotics of the eigenfunctions of the Laplace operator,” Dokl. Akad. Nauk SSSR,200, No. 6, 1277–1279 (1971). [124] V. F. Lazutkin, ”Construction of the asymptotics of a sequence of eigenfunctions of the Laplace operator corresponding to an elliptic periodic trajectory of the billiard problem,” in: Probl. Mat. Fiz., No. 6, Leningrad Univ., Leningrad (1973), pp. 90–100. [125] V. F. Lazutkin, ”Asymptotics of the eigenvalues of the Laplace operator on the plane and quasi-modes. A sequence of quasimodes corresponding to a system of caustics near the boundary of the domain,” Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 2, 437–465 (1973). [126] V. F. Lazutkin, ”Short wave asymptotics of the eigenfrequencies of a vibrating membrane constructed according to a family of invariant curves,” Sixth All-Union Symposium on Diffraction and Propagation of Waves. Tsakhkadsor, 1973, Brief Summaries of Reports, Book I, Otd. Naychn. Izd. VNIIRI, Erevan (1973), pp. 40–45. [127] V. F. Lazutkin, ”Asymptotics of the eigenfunctions of the Laplace operator on the torus,” in: Questions in the Dynamical Theory of Wave Propagation [in Russian], No. 14, Leningrad (1974), pp. 94–108. [128] V. F. Lazutkin, ”Asymptotics of a sequence of eigenfunctions of the Laplace operator corresponding to a family of invariant curves,” in: Probl. Mat. Fiz., No. 7, Leningrad Univ., Leningrad (1974), pp. 39–64. [129] V. F. Lazutkin and T. F. Pankratova, ”Asymptotics of the width of lacunae in the spectrum of the Sturm-Liouville operator with a periodic potential,” Dokl. Akad. Nauk SSSR,215, No. 5, 1048–1051 (1974). · Zbl 0318.34035 [130] V. F. Lazutkin and N. V. Svanidze, ”On the way in which the property of general ellipticity of a system of rays is related to the spectrum for a two-mirror resonator,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,25, 111–115 (1972). [131] V. F. Lazutkin and Yu. B. Yanushanets, ”Asymptotics of a sequence of eigenfunctions of the Laplace operator corresponding to a family of invariant curves,” in: Prob. Mat. Fiz., No. 7, Leningrad Univ., Leningrad (1974), pp. 65–79. [132] L. D. Landau and E. M. Lifshits, Quantum Mechanics. I [in Russian], Gostekhizdat, Moscow-Leningrad (1948). [133] B. M. Levitan, ”On expansions in eigenfunctions of the Laplace operator,” Mat. Sb.,35, No. 2, 267–316 (1954). [134] B. M. Levitan, ”On expansions in terms of the eigenfunctions of the Schrödinger operator in the case of an unboundedly increasing potential,” Dokl. Akad. Nauk SSSR,103, No. 2, 191–194 (1955). [135] B. M. Levitan, ”On an eigenfunction expansion for a self-adjoint partial differential operator,” Tr. Mosk. Mat. Obshch.,5, 269–298 (1956). [136] B. M. Levitan, ”On the asymptotic behavior of the Green function and expansion in terms of eigenfunctions of the Schrödinger equation,” Mat. Sb.,41, No. 4, 493–458 (1957). [137] B. M. Levitan, ”Asymptotic behavior of the spectral function of an elliptic equation,” Usp. Mat. Nauk,26, No. 6, 151–212 (1971). [138] B. M. Levitan, ”Some questions of the spectral theory of differential operators,” in: International Congress of Mathematicians in Nice. 1970 [in Russian], Nauka, Moscow (1972), pp. 145–157. [139] B. M. Levitan and A. G. Ramm, ”The asymptotic behavior of the eigenvalues in the case where the potential depends on a parameter,” Mat. Zametki,1, No. 5, 595–604 (1967). [140] B. M. Levitan and I. S. Sargsyan, Introduction to Spectral Theory. Self-Adjoint Ordinary Differential Operators [in Russian], Nauka, Moscow. · Zbl 0225.47019 [141] V. P. Maslov, The WKB Method in the Multidimensional Case (appendix to the book by J. Heading, Introduction to the Method of Phase Integrals [the WKB method]) [Russian translation], Mir, Moscow (1965), pp. 177–237. [142] V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], Moscow State Univ. (1965). [143] V. P. Maslov ”Asymptotics of the eigenvalues of the Schrödinger operator,” Usp. Mat. Nauk,20, No. 6, 134–138 (1965). · Zbl 0163.32502 [144] V. P. Maslov and M. V. Fedoryuk, ”The canonical operator (the real case),” in: Sovrem. Probl. Mat., Vol. I (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1973), pp. 85–167. [145] P. A. Mishnaevskii, ”The Green function and asymptotic behavior of eigenvalues of the operator Sturm-Liouville problem,” Dokl. Akad. Nauk SSSR,203, No. 4, 762–765 (1972). [146] S. A. Molchanov, ”Diffusion processes and Riemannian geometry,” Usp. Mat. Nauk,30, No. 1, 3–59 (1975). · Zbl 0315.53026 [147] M. A. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow (1969). · Zbl 0219.34001 [148] V. V. Obraztsov, ”On the spectrum of the radial Dirac and Schrödinger equations,” Dop. Akad. Nauk Ukr. RSR, A, No. 8, 710–713 (1972). [149] V. V. Obraztsov, ”The generalized Ritz formula,” Redkollegiya Sib. Mat. Zh. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1971). [150] V. G. Osmovolovskii, ”On the asymptotics of the eigenvibrations of an elliptic membrane,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 2, 365–378 (1974). [151] M. Otelbaev, ”On Titchmarsh’s method of estimating the resolvent,” Dokl. Akad. Nauk SSSR,211, No. 4, 787–790 (1973). [152] M. Otelbaev, ”Distribution of the eigenvalues of the Dirac operator,” Mat. Zametki,14, No. 6, 843–852 (1973). [153] M. Otelbaev and Ya. T. Sultanaev, ”On formulas for the distribution of the eigenvalues of singular differential operators,” Mat. Zametki,14, No. 3, 361–368 (1974). [154] T. F. Pankratova, ”On the eigenfunctions of the Laplace operator on the surface of a triaxial ellipsoid and in a domain exterior to it,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,9, 192–211 (1968). · Zbl 0195.38901 [155] T. F. Pankratova, ”On the proper oscillations of an annular resonator. The vector problem,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,15, 122–141 (1969). · Zbl 0215.45902 [156] T. F. Pankratova, ”On the proper oscillations of a three-dimensional resonator,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,17, 184–208 (1970). [157] L. A. Pastur, ”Spectra of random self-adjoint operators,” Usp. Mat. Nauk,28, No. 1, 3–64 (1973). · Zbl 0277.60049 [158] M. M. Popov, ”Asymptotics of some sequences of eigenvalues of boundary value problems for the Helmholtz equation in the multidimensional case,” Dokl. Akad. Nauk SSSR,184, No. 5, 1076–1079 (1969). [159] M. M. Popov, ”Proper oscillations of multi-mirror resonators,” Vestn. Leningr. Univ.,22, 42–54 (1969). [160] T. M. Popova, ”Higher order approximations for the proper vibrations of a planar multi-mirror resonator,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,15, 142–153 (1969). · Zbl 0221.35023 [161] M. F. Pyshkina, ”Asymptotics of the eigenfunctions of the Helmholtz equation concentrated near a closed geodesic,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,15, 154–160 (1969). [162] A. G. Ramm, ”The asymptotic distribution of the eigenvalues of the Schrödinger operator with an increasing potential in domains with an infinite boundary,” Dokl. Akad. Nauk SSSR,183, No. 4, 780–783 (1968). [163] D. I. Rogach, ”Asymptotics of the eigenvalues and eigenfunctions of a certain boundary value problem,” in: Investigations in Modern Problems of Summation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk (1972), pp. 151–155. [164] G. V. Rozenblyum, ”On the distribution of eigenvalues of the first boundary value problem in unbounded domains,” Dokl. Akad. Nauk SSSR,200, No. 5, 1034–1036 (1971). [165] G. V. Rozenblyum, ”Distribution of the discrete spectrum of singular differential operators,” Dokl. Akad. Nauk SSSR,202, No. 5, 1012–1015 (1972). [166] G. V. Rozenblyum, ”On eigenvalues of the first boundary value problem in unbounded domains,” Mat. Sb.,89, No. 2, 234–247 (1972). [167] G. V. Rozenblyum, ”On the computation of the spectral asymptotics for the Laplace operator in domains of infinite measure,” in: Probl. Mat. Anal., No. 4 (1973), pp. 95–106. · Zbl 0394.35091 [168] G. V. Rozenblyum, ”Asymptotics of the eigenvalues of the Schrödinger operator,” Mat. Sb.,93, No. 3, 346–367 (1974). · Zbl 0296.35064 [169] G. V. Rozenblyum, ”Almost-similarity of pseudodifferential systems on the circle,” Dokl. Akad. Nauk SSSR,223, No. 3, 569–571 (1975). · Zbl 0324.35081 [170] I. S. Sargsyan, ”Two-sided asymptotics of the number of eigenvalues of the nonsemi-bounded Dirac operator,” Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 6, 1402–1436 (1972). [171] L. A. Sakhnovich, ”On the spectrum of the radial Schrödinger equation in a neighborhood of zero,” Mat. Sb.,67, No. 2, 221–243 (1965). · Zbl 0132.06804 [172] L. A. Sakhnovich, ”On the Ritz formula and quantum defects of the spectrum of the radial Schrödinger operator,” Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 6, 1297–1310 (1966). · Zbl 0144.47801 [173] L. A. Sakhnovich, ”On the properties of the discrete and continuous spectrum of the radial Dirac equation,” Dokl. Akad. Nauk SSSR,185, No. 1, 61–64 (1969). [174] N. V. Svanidze, ”The correction term for the proper frequencies of a three-dimensional resonator with nondeveloped mirrors,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,15, 161–176 (1969). · Zbl 0221.35024 [175] B. N. Semenov, ”Asymptotics of the eigenfunctions and proper frequencies of a multi-mirror resonator,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,15, 176–186 (1969). · Zbl 0216.38401 [176] S. G. Simonyan, ”Asymptotics of the width of lacunae in the spectrum of the Sturm-Liouville operator with a periodic analytic potential,” Aikanan SSR Gitutyunneri Akademia. Zekuitsner, Dokl. Akad. Nauk Arm. SSR,49, No. 2, 65–68 (1969). [177] S. G. Simonyan, ”Asymptotics of the width of lacunae in the spectrum of the Sturm-Liouville operator with a periodic analytic potential,” Differents. Uravn.,6, No. 7, 1265–1272 (1970). [178] B. Ya. Skacheck, ”On the asymptotics of the negative part of the spectrum of multidimensional differential operators,” Dop. Akad. Nauk Ukr. RSR, No. 1, 14–17 (1964). [179] B. Ya. Skacheck, ”On the asymptotic behavior of the eigenvalues of singular differential operators,” in: Theory of Functions, Functional Analysis and Their Applications. Resp. Nauchn. Sb., No. 3 (1966), pp. 110–116. [180] ”On the asymptotic distribution of the number of eigenvalues of equations of the form Au={\(\lambda\)}Bu,” Dop. Akad. Nauk Ukr. RSR, A, No. 5, 426–429 (1967). [181] B. Ya. Skacheck, ”On the asymptotic distribution of the number of eigenvalues of ordinary differential equations,” in: Theory of Functions, Functional Analysis and Their Applications, Resp. Nauchn. Sb., No. 8 (1969), pp. 63–73. [182] B. Ya. Skacheck, ”On the asymptotic distribution of the eigenvalues of ordinary differential equations,” Dop. Akad. Nauk Ukr. RSR, A, No. 7, 600–602 (1969). [183] B. Ya. Skacheck, ”The distribution of the eigenvalues of singular differential equations,” Dop. Akad. Nauk Ukr. RSR, A, No. 5, 416–419 (1970). [184] B. Ya. Skacheck, ”On the asymptotic distribution of the number of eigenvalues of equations of the form Ay={\(\lambda\)}By,” Dop. Akad. Nauk Ukr. RSR, A, No. 6, 498–501 (1970). · Zbl 0211.39903 [185] B. Ya. Skacheck, ”The distribution of the eigenvalues of one-dimensional singular differential operators,” in: Theory of Functions, Functional Analysis and Their Applications. Resp. Mezhved. Temat. Nauch. Sb., No. 15 (1972), pp. 153–161. [186] B. Ya. Skacheck, ”The distribution of eigenvalues of higher dimensional differential operators,” Funkts. Analiz Prilozhen.,9, No. 1, 83–84 (1975). · Zbl 0331.58011 [187] S. Yu. Slavyanov, ”The asymptotics of singular Sturm-Liouville problems with respect to a large parameter in the case of nearby turning points,” Differents. Uravn.,5, No. 2, 313–325 (1969). · Zbl 0164.39001 [188] S. Yu. Slavyanov, ”Application of the method of comparison problems to perturbations of the Coulomb field. The discrete spectrum,” in: Probl. Mat. Fiz., No. 4, Leningr. Univ., Leningrad (1970), pp. 125–134. · Zbl 0271.34030 [189] S. Yu. Slavyanov, ”High-frequency oscillations of ’bouncing ball’ type in a prolate ellipsoid of revolution,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,42, 239–243 (1974). [190] S. A. Smagin, ”Fractional powers of a hypoelliptic operator,” Dokl. Akad. Nauk SSSR,209, No. 5, 1033–1035 (1973). · Zbl 0299.58012 [191] S. A. Smagin, ”On the meromorphicity of Pz where P is a matrix,” Funkts. Analiz Prilozhen.,9, No. 1, 85–86 (1975). · Zbl 0319.32007 [192] I. A. Solomeshch, ”On the eigenvalues of some degenerate elliptic equations,” Mat. Sb.,54, No. 3, 295–310 (1961). [193] I. A. Solomeshch, ”On the asymptotics of the eigenvalues of bilinear forms related to certain elliptic equations which degenerate on the boundary,” Dokl. Akad. Nauk SSSR,144, No. 4, 727–729 (1962). [194] I. A. Solomeshch, ”On the asymptotics of the eigenvalues of bilinear forms related to degenerate elliptic equations,” Vestn. Leningr. Univ., No. 1, 163–166 (1964). [195] G. A. Suvorchenkova, ”The relation of the asymptotics of the spectral function of an elliptic differential operator of second order to the geometry of a closed manifold,” Dokl. Akad. Nauk SSSR,213, No. 3, 538–541 (1973). [196] G. A. Suvorchenkova, ”Application of Sobolev’s method to the study of the relation of the spectrum of an elliptic differential operator of second order to the geometry of a manifold without boundary,” Differents. Uravn.,11, No. 2, 358–365 (1975). [197] Yu. N. Sudarev, ”On the asymptotic distribution of the eigenvalues of elliptic operators in n-dimensional space,” Differents. Uravn.,3, No. 8, 1364–1374 (1967). · Zbl 0169.13201 [198] Yu. N. Sudarev, ”On certain spectral asymptotic properties of singular operators,” Mat. Zametki,4, No. 2, 169–172 (1968). [199] Yu. N. Sudarev, ”On the distribution of the eigenvalues of a singular operator,” Differents. Uravn.,4, No. 9, 1676–1682 (1968). [200] Ya. T. Sultanaev, ”On the asymptotics of the spectrum of a differential operator in a space of vector-valued functions,” Differents. Uravn.,10, No. 9, 1673–1683 (1974). [201] Ya. T. Sultanaev, ”Asymptotics of the discrete spectrum of one-dimensional singular differential operators,” Differents. Uravn.,10, No. 11, 2010–2020 (1974). [202] Ya. T. Sultanaev, ”Asymptotics of the spectrum of singular differential operators in the indeterminate case,” Vestn. Mosk. Univ. Mat., Mekh., No. 3, 21–30 (1975). · Zbl 0311.34030 [203] Ya. T. Sultanaev, ”Asymptotics of the discrete spectrum of one-dimensional singular operators in the indeterminate case,” Kaz. SSR Fylym Akad. Khabarlary, Izv. Akad. Nauk Kaz. SSR Ser. Fiz-Mat., No. 3, 86–88 (1975). [204] G. M. Tashchiyan, ”On the distribution of the eigenvalues of the elliptic Dirichlet problem,” in: Proceedings of the Sixth Winter School on Math. Programming and Related Topics, Drogobych, 1973. Funkts. Analiz Prilozhen., Moscow (1975), pp. 273–289. [205] G. M. Tashchiyan, ”On the spectral asymptotics of boundary value problems with weak degeneracy,” Vestn. Leningr. Univ., No. 7, 58–68 (1975). [206] V. N. Tulovskii, ”Asymptotic distribution of eigenvalues for differential operators with constant coefficients,” Dokl. Akad. Nauk SSSR,195, No. 3, 570–573 (1970). [207] V. N. Tulovskii, ”On the asymptotic distribution of eigenvalues of degenerate elliptic equations of second order,” Mat. Sb.,86, No. 1, 76–89 (1971). [208] V. N. Tulovskii, ”The distribution of the eigenvalues for differential operators with constant coefficients,” Funkts. Analiz Prilozhen.,5, No. 3, 85–100 (1971). [209] V. N. Tulovskii, ”The asymptotic distribution of the eigenvalues of differential operators with variable coefficients,” Dokl. Akad. Nauk SSSR,206, No. 4, 827–830 (1972). · Zbl 0263.35081 [210] V. N. Tulovskii, ”The asymptotic distribution of eigenvalues of differential equations,” Mat. Sb.,819, No. 2, 191–206 (1972). · Zbl 0263.35080 [211] V. N. Tulovskii and M. A. Shubin, ”On the asymptotics of the eigenvalues of pseudo-differential operators,” Usp. Mat. Nauk,28, No. 5, 242 (1973). · Zbl 0286.35059 [212] V. N. Tulovskii and M. A. Shubin, ”On the asymptotic distribution of the eigenvalues of pseudodifferential operators in Rn,” Mat. Sb.,92, No. 4, 571–588 (1973). · Zbl 0286.35059 [213] M. V. Fedoryuk, ”The asymptotics of the discrete spectrum of the operator w” (x)2p(x)w(x),” Mat. Sb.,68, No. 1, 81–110 (1965). [214] M. V. Fedoryuk, ”Quasiclassical asyraptotics of the one-dimensional Schrödingar equation,” Usp. Mat. Nauk,30, No. 2, 268 (1975). [215] B. V. Fedosov, ”Asymptotic formulas for the eigenvalues of the Laplace operator in the case of a polygonal domain,” Dokl. Akad. Nauk SSSR,151 No. 4, 786–789 (1963). [216] B. V. Fedosov, ”Asymptotic formulas for the eigenvalues of the Laplace operator in the case of a polygon,” Dokl. Akad. Nauk SSSR,157, No. 3, 536–538 (1964). [217] L. Hörmander, ”On the Riesz means of the spectral functions of elliptic differential operators and the corresponding spectral resolutions,” Matematika,12, No. 5, 91–130 (1968). [218] L. Hörmander, ”The spectral function of an elliptic operator,” Matematika,13, No. 6, 114–137 (1969). [219] V. E. Shatalov, ”On Dirichlet series formed from the eigenvalues of boundary value problems for an arbitrary elliptic differential operator of second order,” Differents. Uravn.,8, No. 7, 1267–2182 (1972). [220] V. E. Shatalov, ”The {\(\zeta\)}-function in the elliptic Sobolev problem,” Differents. Uravn.,10, No. 1, 171–173 (1974). · Zbl 0284.35023 [221] V. E. Shatalov and I. A. Shishmarev, ”On Dirichlet series for elliptic operators,” Dokl. Akad. Nauk SSSR,182, No. 6, 1280–1282 (1968). · Zbl 0172.14102 [222] V. E. Shatalov and I. A. Shishmarev, ”Analytic continuation of Dirichlet series of elliptic boundary value problems. I,” Differents. Uravn.,6, No. 9, 1652–1672 (1970). · Zbl 0209.41202 [223] V. E. Shatalov and I. A. Shishmarev, ”Analytic continuation of Dirichlet series of elliptic boundary value problems. II,” Differents. Uravn.,6, No. 10, 1844–1850 (1970). · Zbl 0214.36204 [224] I. A. Shishmarev, ”On the eigenfunctions of a polyharmonic operator,” Dokl. Akad. Nauk SSSR,186, No. 4, 781–782 (1969). · Zbl 0201.13601 [225] S. D. Shmulevich, ”On the distribution of eigenvalues of the operator of a self-adjoint elliptic problem in an unbounded domain,” Dokl. Akad. Nauk SSSR,189, No. 5, 959–962 (1969). [226] A. I. Shnirel’man, ”On the asymptotic multiplicity of the spectrum of the Laplace operator,” Usp. Mat. Nauk,30, No. 4, 265–266 (1975). · Zbl 0334.35058 [227] M. A. Shubin, ”Elliptic almost-periodic operators and von Neumann algebras,” Funkts. Analiz Prilozhen.,9, No. 1, 89–90 (1975). · Zbl 0355.35069 [228] M. A. Shubin, ”On the asymptotics of the spectrum of elliptic operators with almost-periodic coefficients,” Usp. Mat. Nauk,30, No. 2, 268–269 (1975). [229] D. R. Yafaev, ”Trace formulas for charged particles in nonrelativistic quantum mechanics,” Teor. Mat. Fiz.,11, No. 1, 78–92 (1972). [230] S. Agmon, Lectures on Elliptic Boundary Value Problems, Princeton, New Jersey (1965). · Zbl 0142.37401 [231] S. Agmon ”On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems,” Commun. Pure Appl. Math.,18, No. 4, 627–663 (1965). · Zbl 0151.20203 [232] S. Agmon, ”Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators,” Arch. Rat. Mech. Anal.,28, No. 3, 165–183 (1968). · Zbl 0159.15903 [233] S. Agmon and Y. Kannai, ”On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators,” Israel J. Math.,5, No. 1, 1–30 (1967). · Zbl 0148.13003 [234] R. Arima and S. Mizohata, ”Propriétés asymptotiques des valeurs propres des opérateurs elliptiques auto-adjoints,” J. Math. Kyoto Univ.,4, No. 1, 245–254 (1964). · Zbl 0143.13902 [235] J.-M Audrin and Pham The Lai, ”Comportement asymptotique des valeurs propres d’un problème de Dirichlet elliptique autoadjoint sur un ouvert non borné,” C.R. Acad. Sci.,276, No. 18, A1197-A1200 (1973). · Zbl 0279.35064 [236] V. G. Avakumovic, ”Über die Eigenfunktionen auf geschlossenen Riemannschen Manigfaltigkeiten,” Math. Z.,65, No. 4, 327–344 (1956). · Zbl 0070.32601 [237] P. B. Bailey and F. H. Brownell, ”Removal of the log factor in the asymptotic estimates of polygonal membrane eigenvalues,” J. Math. Anal. Appl.,4, No. 2, 212–239 (1962). · Zbl 0163.13602 [238] R. Balian and C. Bloch, ”Distribution of eigenfrequencies for the wave equation in a finite domain. I. Three-Dimensional problem with smooth boundary surface,” Ann. Phys.,60, No. 2, 401–447 (1970). · Zbl 0207.40202 [239] R. Balian and C. Bloch, ”Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces,” Ann. Phys.,64, No. 1, 271–307 (1971). · Zbl 0218.35071 [240] R. Balian and C. Bloch, ”Distribution of eigenfrequencies for the wave equation in a finite domain. III,” Ann. Phys.,69, No. 1, 76–100 (1972). · Zbl 0226.35070 [241] H. P. Baltes and E. R. Hilf, ”Progress in Weyl’s problem achieved by computational methods,” Comput. Phys. Commun.,4, No. 2, 208–213 (1972). [242] M. S. Baouendi and G. Goulaouic, ”Étude de la régularité et du spectre d’une classe d’operateurs élliptiques dégénerés,” C. R. Acad. Sci.,266, No. 6, A336–338 (1968). · Zbl 0162.19702 [243] M. S. Baouendi and C. Goulaouic, ”Régularité et théorie spectrale pour une classe d’operateurs élliptiques dégénerés,” Arch. Rat. Mech. Anal.,34, No. 5, 361–379 (1969). · Zbl 0185.34901 [244] M. S. Baouendi and C. Goulaouic, ”Régularité analytique et iétérés d’operateurs élliptique dégénerés; applications,” J. Funct. Anal.,9, No. 2, 208–248 (1972). · Zbl 0243.35044 [245] R. Beals, ”On the eigenvalue distribution for elliptic operators without smooth coefficients. I,” Bull. Am. Math. Soc.,72, No. 4, 701–705 (1966). · Zbl 0161.08902 [246] R. Beals, ”Classes of compact operators and eigenvalue distributions for elliptic operators,” Am. J. Math.,89, No. 4, 1056–1072 (1967). · Zbl 0162.46003 [247] R. Beals, ”Global asymptotic estimates for elliptic spectral functions and eigenvalues,” Bull. Am. Math. Soc.,74, No. 2, 358–360 (1968). · Zbl 0159.40301 [248] R. Beals, ”On eigenvalue distribution for elliptic operators without smooth coefficients. II,” Bull. Am. Math. Soc.,74, No. 5, 1022–1024 (1968). · Zbl 0165.16303 [249] R. Beals, ”Asymptotic behavior of Green’s function and spectral function of an elliptic operator,” J. Funct. Anal.,5, No. 3, 484–503 (1970). · Zbl 0195.11401 [250] M. Berger, P. Gauduchon, and E. Mazet., ”Le spectre d’une variété riemannienne,” Lect. Notes Math.,194, VII (1971). · Zbl 0223.53034 [251] A.-M Bertheir, ”Théorie spectrale pour des operateurs élliptiques dégénerés sur le bord de domaines de géometrie donneé,” C. R. Acad. Sci., A279, No. 2, 61–64 (1974). [252] L.-C. Böiers, ”Eigenfunction expansions for partially hypoelliptic operators,” Ark. Mat.,10, No. 1, 79–98 (1972). · Zbl 0233.35072 [253] L. Boutet de Monvel and P. Grisvard, ”Le comportement asymptotique des valeurs propres d’un operateur,” C. R. Acad. Sci.,272, No. 1, A23-A26 (1971). · Zbl 0212.15904 [254] L. Boutet de Monvel and P. Grisvard, ”The asymptotic behavior of the eigenvalues of an operator related to the widths of balls,” Symp. Math. Inst. Naz. Alta Mat., Vol. 7, London-New York (1971), pp. 559–576. · Zbl 0229.35071 [255] F. E. Browder, ”The asymptotic distribution of eigenfunctions and eigenvalues for semi-elliptic differential operators,” Proc. Nat. Acad. Sci., USA,43, No. 3, 270–273 (1957). · Zbl 0077.30002 [256] F. E. Browder, ”Asymptotic distribution of eigenvalues and eigenfunctions of nonlocal elliptic boundary value problems. I,” Am. J. Math.,87, No. 1, 175–195 (1965). · Zbl 0143.14403 [257] F. H. Brownell, ”An extension of Weyl’s asymptotic law for eigenvalues,” Pac. J. Math.,5, No. 4, 483–499 (1955). · Zbl 0066.08602 [258] F. H. Brownell and C. W. Clark, ”Asymptotic distribution of the eigenvalues of the lower part of the Schrödinger operator spectrum,” J. Math. Mech.,10, No. 1, 31–70 (1961). · Zbl 0148.09501 [259] R. Brübach, ”Über die Spectralmatrix elliptischer Systeme,” Math. Z.,140, No. 3, 231–244 (1974). · Zbl 0279.35066 [260] J. Brüning, ”Zur Abschätzung der Spektralfunktion elliptischer Operatoren,” Math. Z.,137, No. 1, 75–85 (1974). · Zbl 0268.47053 [261] Bui An Ton, ”Asymptotic distribution of eigenvalues and eigenfunctions for general linear elliptic boundary value problems,” Trans. Am. Math. Soc.,122, No. 2, 516–546 (1966). · Zbl 0139.05802 [262] Bui An Ton, ”On the asymptotic behavior of the spectral function of elliptic pseudo-differential operators. III,” J. Math.,14, No. 3, 452–463 (1970). · Zbl 0195.14502 [263] Bui An Ton, ”Asymptotic distribution of eigenvalues and eigenfunctions of a general class of elliptic pseudodifferential operators,” Ill. J. Math.,15, No. 2, 290–301 (1971). · Zbl 0225.35079 [264] J. Canosa, ”Asymptotic behavior of Sturm-Liouville systems,” J. Math. Phys.,13, No. 5, 615–621 (1972). · Zbl 0238.34038 [265] T. Carleman, ”Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes,” C. R. 8-éme Congr. des Math. Scand. Stockholm 1934, Lune (1935), pp. 34–44. [266] K. Chadan, ”The asymptotic behavior of the number of bound states of a given potential in the limit of large coupling,” Nuovo Cimento,A58, No. 1, 191–204 (1968). [267] J. Chaudhuri and W. N. Everitt, ”The spectrum of a fourth-order differential operator,” Proc. R. Soc. Edinburg, A68, No. 3, 185–210 (1970). · Zbl 0188.46401 [268] J. Chaudhuri and W. N. Everitt, ”On the distribution of the eigenvalues and the order of the eigenfunctions of a fourth-order singular boundary value problem,” Proc. R. Soc. Edinburgh,A71, No. 1, 61–75 (1972). · Zbl 0325.34024 [269] Z. Ciesielski, ”On the spectrum of the Laplace operator,” Rocz. Pol. Tow. Mat., Ser. 1,14, 41–50 (1970). · Zbl 0242.47030 [270] C. Clark, ”An asymptotic formula for the eigenvalues of the Laplace operator in an unbounded domain,” Bull. Am. Math. Soc.,72, No. 4, 709–712 (1966). · Zbl 0145.14802 [271] C. Clark, ”The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems,” SIAM Rev.,9, No. 4, 627–646 (1967). · Zbl 0159.19704 [272] C. Clark, ”On relatively bounded perturbations of ordinary differential operators,” Pac. J. Math.,25, No. 1, 59–70 (1968). · Zbl 0185.23101 [273] C. Clark, ”On the growth of the eigenvalues of the Laplace operator in a quasi-bounded domain,” Arch. Rat. Mech. Anal.,31, No. 5, 352–356 (1968). · Zbl 0165.12602 [274] C. Clark, ”On the asymptotic formula for the eigenvalues of membranes and plates,” Boll. Unione Mat. Ital.,3, No. 2, 191–196 (1970). · Zbl 0215.28901 [275] C. Clark and D. Hewgill, ”One can hear whether a drum has finite area,” Proc. Am. Math. Soc.,18, No. 2, 236–237 (1967). · Zbl 0146.34904 [276] J. H. E. Cohn, ”Large eigenvalues of a singular boundary value problem,” Cambr. Phil. Soc.,63, No. 2, 473–475 (1967). · Zbl 0149.04701 [277] J. H. E. Cohn, ”On the negative eigenvalues of a singular boundary value problem,” Q. J. Math.,20, No. 78, 187–191 (1969). · Zbl 0214.34201 [278] Y. Colin de Verdiere, ”Spectre du laplacien et longuers des géodesiques periodiques,” C. R. Acad. Sci.,276, No. 23, A1517-A1519 (1973). [279] Y. Colin de Verdiere, ”Spectre du laplacien et longueurs des géodesiques periodiques. I,” Compos. Math.,27, No. 1, 831–106 (1973). [280] Y. Colin de Verdière, ”Spectre du laplacien et longueurs des géodesiques periodiques. II,” Compos. Math.,27, No. 2, 159–184 (1973). · Zbl 0281.53036 [281] J. J. Duistermaat and V. M. Guillemin, ”The spectrum of positive elliptic operators and periodic bicharacteristics,” Invent. Math.,29, No. 1, 39–79 (1975). · Zbl 0307.35071 [282] M. S. P. Eastham, ”Results and problems in the spectral theory of periodic differential equations,” Lect. Notes Math.,448, 126–135 (1975). [283] W. Eberhard, ”Über Eigenwerte und Eigenfunktionen einer Klasse von nichtselbstadjungierten Randwertproblemen,” Math. Z.,119, No. 2, 174–178 (1971). · Zbl 0198.12101 [284] J. Eisenfeld, ”Quadratic eigenvalue problems,” J. Math. Anal. Appl.,23, No. 1, 58–70 (1968). · Zbl 0157.45402 [285] A. El Kolli, ”n-iéme epaisseur dans les espaces de Sobolev avec poids,” C. R. Acad. Sci.,272, No. 8, A537–539 (1971). · Zbl 0225.41003 [286] A. El Kolli, ”n-iéme epaisseur dans les espaces de Sobolev avec poids,” J. Approx. Theory,10, No. 3, 268–294 (1974). · Zbl 0306.46038 [287] M. E. Fisher, ”On hearing the shape of a drum,” J. Comb. Theory,1, 105–125 (1966). · Zbl 0139.43302 [288] G. Fix, ”Asymptotic eigenvalues of Sturm-Liouville systems,” J. Math. Anal. Appl.,19, No. 3, 519–525 (1967). · Zbl 0153.40401 [289] J. Fleckinger and G. Metivier, ”Théorie spectrale des operateurs uniformément élliptiques sur quelques ouverts irréguliers,” C. R. Acad. Sci.,276, A913-A916 (1973). · Zbl 0251.35074 [290] R. S. Freeman, ”On the spectrum and resolvent of homogeneous elliptic differential operators with constant coefficients,” Bull. Am. Math. Soc.,72, No. 3, 538–541 (1966). · Zbl 0171.08404 [291] R. S. Freeman, ”On the spectrum and resolvent of homogeneous elliptic differential operators with constant coefficients,” Erratum Bull. Am. Math. Soc.,73, No. 3, 496 (1967). · Zbl 0153.03103 [292] J. Froese, ”Asymptotic estimates for class 2 singular problems,” J. Diff. Equations,7, No. 3, 435–447 (1970). · Zbl 0222.34020 [293] D. Fujiwara, ”On the asymptotic formula for the Green operators for elliptic operators on compact manifolds,” J. Fac. Sci. Univ. Tokyo, Sec. I,14, No. 2, 251–283 (1967). · Zbl 0157.16903 [294] D. Fujiwara, ”On the asymptotic behavior of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators,” J. Math. Soc. Jpn.,21, No. 4, 481–522 (1969). · Zbl 0186.43103 [295] G. Geymonat and G. Grubb, ”Spectral theory for boundary value problems for elliptic systems of mixed order,” Bull. Am. Math. Soc.,80, No. 6, 1255–1259 (1974). · Zbl 0301.35071 [296] M. Giertz, ”On lösningarna i L2(, till ekvationen ” +({\(\lambda\)}(x))y=0 när gär snabbi växande,” KTH-Avhandl.,251, 3 (1969). [297] Ch. Goulaouic, ”Sur la théorie spectrale des operateurs élliptiques (éventuellement dégénerés),” Lect. Notes Math.,179, 231–244 (1971) [298] Ch. Goulaouic, ”Degenerate elliptic boundary value problems and applications,” Lect. Notes Math.,419, 137–142 (1974). [299] P. Greiner, ”An asymptotic expansion for the heat equation,” Arch. Rat. Mech. Anal.,41, No. 3, 163–218 (1971). · Zbl 0238.35038 [300] D. Gromes, ”Über die asymptotische Verteilung der Eigenwerte des Laplace Operators für Gebiete auf der Kugeloberfläche,” Math. Z.,94, No. 2, 110–121 (1966). · Zbl 0146.35002 [301] W. Gromes, ”Über das asymptotische Verhalten der Spektralfunktion elliptischer Systeme,” Math. Z.,118, No. 4, 254–270 (1970). · Zbl 0199.42602 [302] W. Gromes, ”Über die Spektralfunktion elliptischer Systeme auf Riemannschen Mannigfaltigkeiten,” Math. Z.,123, No. 4, 340–350 (1971). · Zbl 0218.35073 [303] G. Grubb, ”Le spectre negatif des problèmes aux limites autoadjoints fortement élliptiques,” C. R. Acad. Sci.,274, No. 5, A409-A412 (1972). · Zbl 0234.35075 [304] G. Grubb, ”Inequalities for boundary value problems for systems of partial differential operators,” Colloq. Int. CNRS,213, 171–187 (1973). · Zbl 0267.35026 [305] M. Guillemot-Teissier, ”Applications des méthodes variationneles a l’étude spectrale d’operateurs dégénérés,” C. R. Acad. Sci.,227, No. 15, A739-A742 (1973). · Zbl 0279.35063 [306] M. Guillemot-Teissier, ”Propriétés spectrales de certains operateurs elliptiques dégénérés,” C. R. Acad. Sci.,278, No. 3, A137-A140 (1974). · Zbl 0274.35046 [307] D. Hewgill, ”On the eigenvalues of the Laplacian in an unbounded domain,” Arch. Rat. Mech. Anal.,27, No. 2, 153–164 (1967). · Zbl 0155.17102 [308] D. Hewgill, ”On the eigenvalues of a second order elliptic operator in an unbounded domain,” Pac. J. Math.,51, No. 2, 467–476 (1974). · Zbl 0299.35070 [309] D. Hewgill, ”On the growth of the eigenvalues of an elliptic operator in a quasi-bounded domain,” Arch. Rat. Mech. Anal.,56, No. 4, 367–371 (1974). · Zbl 0296.35061 [310] P. Heywood, ”On the asymptotic distribution of eigenvalues,” Proc. London Math. Soc.,4, No. 16, 456–470 (1954). · Zbl 0058.07301 [311] H. Hochstadt, ”The distribution of eigenvalues of ordinary differential operators,” Proc. R. Soc. London,A310, No. 1503, 565–577 (1969). · Zbl 0177.11803 [312] H. Hochstadt, ”A second order differential operator with eigenvalue degeneracy,” Stud. Appl. Math.,51, No. 1, 99–105 (1972). · Zbl 0245.34018 [313] J. W. Jerome, ”Asymptotic estimate of the L2 n-width,” J. Math. Anal. Appl.,22, No. 3, 449–464 (1968). · Zbl 0159.18202 [314] M. Kac, ”Can one hear the shape of a drum?” Am. Math. Monthly,73, No. 4, 1–23 (1966). · Zbl 0139.05603 [315] M. Kac and P. van Moerbeke, ”On some isospectral second order differential operators,” Proc. Nat. Acad. Sci. USA,71, No. 6, 2350–2351 (1974). · Zbl 0294.34012 [316] Y. Kannai, ”On the asymptotic behavior of resolvent kernels, spectral functions, and eigenvalues of semielliptic systems,” Ann Scuola Norm. Super. Pisa, Sci. Fis. Mat.,23, No. 4, 563–634 (1969). · Zbl 0193.07301 [317] J. Keller and D. Ahluwalia, ”Uniform asymptotic solution of eigenvalue problems for convex plane domains,” SIAM J. Appl. Math.,25, No. 4, 583–591 (1973). · Zbl 0294.35062 [318] J. Keller and S. Rubinow, ”Asymptotic solution of eigenvalue problems,” Ann. Phys.,9, No. 1, 24–75 (1960). · Zbl 0087.43002 [319] J. Keller and S. Rubinow, ”Asymptotic solution of eigenvalue problems,” Ann. Phys.,10, No. 2, 303–305 (1960). · Zbl 0087.43002 [320] J. R. Kuttler and V. G. Sigillito, ”Lower bounds for Stekloff and free membrane eigenvalues,” SIAM Rev.,10, No. 3, 368–370 (1968). · Zbl 0159.16104 [321] E. Larsson, ”On the asymptotic distribution of eigenvalues,” Arkiv Mat.,6, No. 6, 563–573 (1966). · Zbl 0149.07602 [322] G. Louchard, ”Mouvement Brownien et valeurs propres du laplacien,” Ann. Inst. H. Poincaré,4, No. 4, 331–342 (1968–69). · Zbl 0181.20803 [323] E. Makai, ”Complete orthogonal systems of eigenfunctions of three triangular membranes,” Stud. Sci. Math. Hung.,5, Nos. 1–2, 51–62 (1970). · Zbl 0198.44302 [324] E. Makai, ”Vollständige orthogonale Systeme von Eigenfunktionen zwei dreieckiger Membranen,” Schriften Inst. Math. Dtsch. Akad. Wiss., Berlin,A, No. 7, 77–81 (1970). · Zbl 0203.41104 [325] K. Maruo, ”Asymptotic distribution of eigenvalues of nonsymmetric operators associated with strongly elliptic sequilinear forms,” Osaka J. Math.,9, No. 3, 547–560 (1972). · Zbl 0251.35077 [326] K. Maruo, ”The asymptotic formulas for eigenvalues of elliptic operators which degenerate at the boundary,” Proc. Jpn. Acad.,48, No. 7, 454–457 (1972). · Zbl 0251.35076 [327] K. Maruo and H. Tanabe, ”On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesquilinear forms,” Osaka J. Math.,8, No. 3, 323–345 (1971). · Zbl 0227.35073 [328] K. Maruo and H. Tanabe, ”On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesquilinear forms,” Proc. Jpn. Acad.,47, No. 3, 268–270 (1971). · Zbl 0225.35074 [329] H. P. McKean, ”Selberg’s trace formula as applied to a compact Riemann surface,” Commun. Pure Appl. Math.,25, No. 3, 225–246 (1972). [330] H. P. McKean and J. M. Singer, ”Curvature and eigenvalues of the Laplacian,” J. Diff. Geom.,1, No. 1, 43–69 (1967). · Zbl 0198.44301 [331] J. B. McLeod, ”On the distribution of eigenvalues for an n-th order equation,” Q. J. Math.,17, No. 66, 112–131 (1966). · Zbl 0151.11203 [332] S. Mizohata, ”Sur les propriétés asymptotiques des valeurs propres pour les opérateurs elliptiques,” Proc. Jpn. Acad.,41, No. 2, 104–108 (1965). · Zbl 0143.14402 [333] S. Mizohata, ”Sur les propriétés asymptotiques des valeurs propres pour les opérateurs elliptiques,” J. Math. Kyoto Univ.,4, No. 3, 399–428 (1965). · Zbl 0147.09602 [334] M. Nagase, ”On the asymptotic behavior of resolvent kernels for elliptic operators,” J. Math. Soc. Jpn.,25, No. 3, 464–474 (1973). · Zbl 0253.35064 [335] A. H. Nayfeh, ”Asymptotic solutions of second-order linear equations with three transition points,” J. Math. Phys.,15, No. 12, 2063–2066 (1974). · Zbl 0301.34071 [336] N. Nilsson, ”Asymptotic estimates for the spectral function connected with hypoelliptic differential operators,” Arkiv Mat.,5, No. 6, 527–540 (1965). · Zbl 0144.36302 [337] N. Nilsson, ”Some estimates for spectral functions connected with formally hypoelliptic differential operators,” Ark. Mat.,10, No. 2, 251–275 (1972). · Zbl 0245.35063 [338] C. Nordin, ”Asymptotic distribution of the eigenvalues of a degenerate elliptic operator,” Ark. Mat.,10, No. 1, 9–21 (1972). · Zbl 0234.35074 [339] J. Odhnoff, ”Operators generated by differential problems with eigenvalue parameter in the equation and the boundary condition,” Medd. Lunds Univ. Mat. Semin.,14, (1959). · Zbl 0138.36103 [340] Pham The Lai, ”Comportement asymptotique des valeurs propres d’une classe d’opérateurs elliptiques dégénérés en dimension 2,” C. R. Acad. Sci.,A278, No. 26, 1619–1622 (1974). · Zbl 0294.35063 [341] Pham The Lai, ”Classes de compacité d’opérateurs intervenant dans une classe de problèmes elliptiques dégénérés,” Isr. J. Math.,17, No. 4, 364–379 (1974). · Zbl 0299.35047 [342] Pham The Lai, ”Opérateurs elliptiques dégénérés: comportement asymptotique du noyau de la résolvente et des valeurs propres,” C. R. Acad. Sci.,280, No. 16, A1067-A1070 (1975). · Zbl 0305.35040 [343] A. Pleyel, ”Certain indefinite differential eigenvalue problems – the asymptotic distribution of their eigenfunctions,” Partial Differential Equations and Continuum Mech., Wisconsin Press, Madison (1961), pp. 19–37. [344] L. Sandgren, ”A vibration problem,” Medd. Lunds Univ. Mat. Semin. (1955). · Zbl 0067.35303 [345] R. Seeley, ”Complex powers of an elliptic operator,” Am. Math. Soc. Proc., Symp. Pure Math.,10, 288–307 (1968). [346] R. Seeley, ”The resolvent of an elliptic boundary problem,” Am. J. Math.,91, No. 4, 889–920 (1969). · Zbl 0191.11801 [347] R. Seeley, ”Analytic extension of the trace associated with elliptic boundary problems,” Am. J. Math.,91, No. 4, 963–983 (1969). · Zbl 0191.11901 [348] R. Seeley, ”Fractional powers of boundary problems,” Actes Congr. Int. Mathematicians, 1970, Vol. 2, Paris (1971), pp. 795–801. [349] S. E. Shamma, ”Asymptotic behavior of Stekloff eigenvalues and eigenfunctions,” SIAM J. Appl. Math.,20, No. 3, 482–490 (1971). · Zbl 0216.38402 [350] S. E. Shamma, ”Asymptotic eigenfunctions of mixed problems of Stekloff’s type,” Z. Angew. Math. Phys.,23, No. 1, 1–12 (1972). · Zbl 0235.35062 [351] S. E. Shamma, ”On the asymptotic solutions of a generalized eigenvalue problem,” Z. Angew. Math. Phys.,24, No. 1, 131–134 (1973). · Zbl 0259.45003 [352] N. Shimakura, ”Quelques exemples des {\(\zeta\)}-fonctions d’Epstein pour les opérateurs elliptiques dégénérés du second ordre,” Proc. Jpn. Acad.,45, No. 10, 866–871 (1969). · Zbl 0197.40802 [353] N. Shimakura, ”Quelques exemples des {\(\zeta\)}-fonctions d’Epstein pour les opérateurs elliptiques dégénérés du second ordre. II,” Proc. Jpn. Acad.,46, No. 10, Suppl., 1065–1069 (1970). · Zbl 0223.35079 [354] N. Shimakura, ”Sur les {\(\zeta\)}-fonction d’Epstein pour des opérateurs elliptiques dégénérés,” Tohoku Math. J.,26, No. 1, 95–131 (1974). · Zbl 0289.35036 [355] Y. Sibuya, ”Subdominant solutions of the differential equation y” 2(x1)... (xm)y=0,” Acta Math.,119, Nos. 3–4, 235–272 (1967). · Zbl 0159.11601 [356] B. Simon, ”On the growth of the number of bound states with increase in potential strength,” J. Math. Phys.,10, No. 7, 1123–1126 (1969). [357] K. Stewarts and R. T. Waecheter, ”On hearing the shape of a drum: further results,” Proc. Cambr. Phil Soc.,69, No. 2, 353–363 (1971). [358] H. Tamura, ”The asymptotic eigenvalue distribution for nonsmooth elliptic operators,” Proc. Jpn. Acad.,50, No. 1, 19–22 (1974). · Zbl 0312.35058 [359] H. Tamura, ”The asymptotic distribution of the lower part eigenvalues for elliptic operators,” Proc. Jpn. Acad.,50, No. 3, 185–187 (1974). · Zbl 0307.35070 [360] H. Tanabe, ”On Green’s function of elliptic and parabolic boundary value problems,” Proc. Jpn. Acad.,48 No. 10, 709–711 (1972). · Zbl 0277.35042 [361] H. Tanabe, ”On remainder estimates in the asymptotic formulas of the distribution of eigenvalues of elliptic operators,” Proc. Jpn. Acad.,48, No. 6, 377–380 (1972). · Zbl 0252.35052 [362] E. C. Titchmarsh, ”On the asymptotic distribution of eigenvalues,” Q. J. Math.,5, No. 19, 228–240 (1954). · Zbl 0056.08305 [363] A. Tsutsumi, ”On the asymptotic behavior of resolvent kernels and spectral functions for some class of hypoelliptic operators,” Proc. Jpn. Acad.,50, No. 1, 63–66 (1974). · Zbl 0324.35017 [364] A. Tsutsumi, ”On the asymptotic behavior of resolvent kernels and spectral functions for some class of hypoelliptic operators,” J. Diff. Equations,18, 366–385 (1975). · Zbl 0301.35007 [365] A. Tsutsumi and Wang Chung-Lie, ”On the asymptotic distribution of eigenvalues for some semielliptic operators,” Trans. Am. Math. Soc.,199, 295–315 (1974). · Zbl 0276.35075 [366] R. T. Waechter, ”On hearing the shape of a drum: an extension to higher dimensions,” Proc. Cambr. Phil. Soc.,72, No. 3, 439–447 (1972). · Zbl 0266.52005 [367] M. Watanabe, ”On the asymptotic distribution of eigenvalues of nonsymmetric operators associated with strongly elliptic sesquilinear forms,” Sci. Repts. Niigata Univ.,A, No. 11, 69–84 (1974). · Zbl 0356.35066 [368] L. Weinberg, ”The asymptotic distribution of eigenvalues for the boundary value problemy”(x)2 p(x)y(x)=0,y 2(, +,” SIAM J. Math. Anal.,2, No. 4, 546–566 (1971). · Zbl 0251.34014 [369] V. H. Weston, ”The spectral distribution for a differential equation associated with infrasing waves,” J. Math. Anal. Appl.,30, No. 3, 596–604 (1970). · Zbl 0216.11104 [370] J. S. Wett and F. Mandl, ”On the asymptotic distribution of eigenvalues,” Proc. R. Soc.,A200, 572–580 (1950). · Zbl 0040.33702 [371] H. Weyl, ”Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen,” Math. Ann.,71 441–479 (1912). · JFM 43.0436.01 [372] H. Weyl, ”Über die Abhängigkeit der Eigenschwingungen einer Membran von der Bengrenzung,” J. Reine Angew. Math.,141, 1–11 (1912). · JFM 43.0948.03 [373] J. Wilkins and J. Ernest, ”The eigenvalues of the Bethe differential system,” SIAM J. Math. Anal.,4, No. 1, 62–77 (1973). · Zbl 0252.34026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.