Yeşiltaş, Özlem; Sever, Ramazan Exponential type complex and non-Hermitian potentials within quantum Hamilton-Jacobi formalism. (English) Zbl 1151.81334 J. Math. Chem. 43, No. 3, 921-931 (2008). Summary: PT-/non-PT-symmetric and non-Hermitian deformed Morse and Pöschl-Teller potentials are studied first time by quantum Hamilton-Jacobi approach. Energy eigenvalues and eigenfunctions are obtained by solving quantum Hamilton-Jacobi equation. Cited in 1 Document MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 70H20 Hamilton-Jacobi equations in mechanics Keywords:PT-symmetry; quantum Hamilton Jacobi; Morse; Pöschl-teller PDF BibTeX XML Cite \textit{Ö. Yeşiltaş} and \textit{R. Sever}, J. Math. Chem. 43, No. 3, 921--931 (2008; Zbl 1151.81334) Full Text: DOI arXiv OpenURL References: [1] Bender C.M., Boettcher S. (1998). Phys. Rev. Lett. 80: 5243 · Zbl 0947.81018 [2] C.M. Bender, J. Math. Phys. 40 (1999) 2201; C.M. Bender and D. C. Brody and H.F. Jones, Phys. Rev. Lett. 89 (2002) 270401; C.M. Bender et al., J. Phys. A 36 (2003) 1029. [3] Mostafazadeh A. (2002). J. Math. Phys. 43: 205 · Zbl 1059.81070 [4] Fityo T.V.A. (2002). J. Phys. A 35: 5893 · Zbl 1066.81538 [5] Weigert S. (2003). Phys. Rev. A 68: 062111 [6] Bender C.M., Cooper F., Meisinger P.N. (1999). Phys. Lett. A 259: 229 · Zbl 0948.81536 [7] Buslaev V., Grecchi V. (1993). J. Phys. A 36: 5541 · Zbl 0817.47077 [8] Delabaere E., Bham F. (1998). Phys. Lett. A 250: 25 [9] C.M. Bender, K.A. Milton and V.M. Savage, Phys. Rev. D 62 (2000) 085001; C.M. Bender, S. Boettcher and H.F. Jones and P.N. Meisinger, J. Math. Phys. 42 (2001) 1960. [10] Bagchi B., Quesne C. (2000). Phys. Lett. A 273: 285 · Zbl 1050.81546 [11] Bagchi B., Quesne C. (2000). Phys. Lett. A 300: 18 · Zbl 0997.81036 [12] Levai G., Cannata F., Ventura A. (2001). J. Phys. A 34: 839 · Zbl 1034.81052 [13] Levai G., Cannata F., Ventura A. (2002). J. Phys. A 35: 5041 · Zbl 1066.81630 [14] F.M. Fernandez, R. Guardiola, J. Ros and M. Znojil, J. Phys. A 31 (1998) 10105; G.A. Merzinescu, J. Phys. A 33 (2000) 4911; O. Mustafa and M. Znojil, J. Phys. A 35 (2002) 8929; M. Znojil, F. Gemperle and O. Mustafa, J. Phys. A 35 (2002) 5781. [15] Milanovic V., Ikonic Z. (2002). Phys. Lett. A 293: 29 · Zbl 0983.81025 [16] Jia C.S., Zeng X.L., Sun L.T. (2002). Phys. Lett. A 294: 185 · Zbl 0985.81031 [17] Znojil M. (2003). J. Phys. A 36: 7639 · Zbl 1052.81104 [18] Znojil M. (2003). J. Phys. A 36: 7825 · Zbl 1029.81020 [19] O. Yesiltas, M. Simsek, R. Sever and C. Tezcan, Phys. Scr. T67 (2003) 472; H. Taseli, J. Phys. A 31 (1998) 779; M. Znojil, Phys. Lett. A 264 (1999) 108; G. Levai and M. Znojil, J. Phys. A 35 (2002) 8793. [20] C.M. Bender and S. Boettcher, J. Phys. A 31 (1998) L273; M. Znojil, J. Phys. A 33 (2000) 4203. [21] Khare A., Sukhatme U. (2004). Phys. Lett. A 324: 406 · Zbl 1123.81420 [22] G. Faridfathi, R. Sever and M. Aktas, J. Math. Chem. 38 (2005) 533; M. Aktas, R. Sever, Mod. Phys. Lett. A 19 (2004) 2871. [23] Levai G., Znojil M. (2000). J. Phys. A 33: 7165 · Zbl 0963.81012 [24] Parthasarathi, Parashar D., Kaushal R.S. (2004). J.Phys. A 37: 781 · Zbl 1074.81026 [25] P.A.M. Dirac, Rev. Mod. Phys. 17 (1945) 195; P.A.M. Dirac, Proc. R. Soc. Lond. 113A (1927) 621. [26] Jordan P. (1926). Z. Phys. 38: 513 [27] Schwinger J. (1958). Quantum Electrodynamics. Dover Publications, New York · Zbl 0088.22203 [28] Leacock R.A., Padgett M.J. (1983). Phys. Rev. Lett. 50: 3 [29] Leacock R.A., Padgett M.J. (1983). Phys. Rev. D D28: 2491 [30] Ranjani S.S. et al. (2005). Ann. Physics 320: 164 · Zbl 1139.81346 [31] Ranjani S.S. et al. (2005). Int. J. Mod. Phys. A 20: 4067 · Zbl 1073.81031 [32] Ranjani S.S. et al. (2004). Mod. Phys. Lett. A 19: 1457 · Zbl 1076.81509 [33] Geojo K.G. et al. (2003). J. Phys. A 36: 4591 · Zbl 1081.81562 [34] Ranjani S.S. et al. (2005). Int. J. Theor. Phys. 44: 1167 · Zbl 1104.81082 [35] Rasinariu C. et al. (2005). Phys. Lett. A 338: 197 · Zbl 1136.81412 [36] Bhalla R.S. et al. (1997). Am. J. Phys. 65: 1187 [37] Bhalla R.S. et al. (1997). Mod. Phys. Lett. A 12: 295 · Zbl 1022.81501 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.