×

Bayesian semiparametric hierarchical empirical likelihood spatial models. (English) Zbl 1326.62079

Summary: We introduce a general hierarchical Bayesian framework that incorporates a flexible nonparametric data model specification through the use of empirical likelihood methodology, which we term semiparametric hierarchical empirical likelihood (SHEL) models. Although general dependence structures can be readily accommodated, we focus on spatial modeling, a relatively underdeveloped area in the empirical likelihood literature. Importantly, the models we develop naturally accommodate spatial association on irregular lattices and irregularly spaced point-referenced data. We illustrate our proposed framework by means of a simulation study and through three real data examples. First, we develop a spatial Fay-Herriot model in the SHEL framework and apply it to the problem of small area estimation in the American Community Survey. Next, we illustrate the SHEL model in the context of areal data (on an irregular lattice) through the North Carolina sudden infant death syndrome (SIDS) dataset. Finally, we analyze a point-referenced dataset from the North American Breeding Bird Survey that considers dove counts for the state of Missouri. In all cases, we demonstrate superior performance of our model, in terms of mean squared prediction error, over standard parametric analyses.

MSC:

62G05 Nonparametric estimation
62F15 Bayesian inference
62H11 Directional data; spatial statistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
62P20 Applications of statistics to economics

Software:

GMRFLib; R; BayesDA
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bandyopadhyay, S.; Lahiri, S. N.; Nordman, D., Frequency domain empirical likelihood method for irregularly spaced spatial data, Ann. Statist., 43, 519-545 (2014) · Zbl 1312.62120
[2] Berliner, L. M., Hierarchical Bayesian time series models, (Maximum Entropy and Bayesian Methods (1996), Springer), 15-22 · Zbl 0886.62080
[3] Besag, J.; York, J.; Mollié, A., Bayesian image restoration with two applications in spatial statistics (with discussion), Ann. Inst. Statist. Math., 43, 1-59 (1991) · Zbl 0760.62029
[4] Chang, I.; Mukerjee, R., Bayesian and frequentist confidence intervals arising from empirical-type likelihoods, Biometrika, 95, 1, 139-147 (2008) · Zbl 1437.62410
[5] Chaudhuri, S.; Ghosh, M., Empirical likelihood for small area estimation, Biometrika, 98, 2, 473-480 (2011) · Zbl 1215.62031
[6] Chaussé, P., Computing generalized method of moments and generalized empirical likelihood with R, J. Stat. Softw., 34, 11, 1-35 (2010)
[7] Chen, J.; Sitter, R.; Wu, C., Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys, Biometrika, 89, 1, 230-237 (2002) · Zbl 0997.62008
[8] Cressie, N.; Chan, N. H., Spatial modeling of regional variables, J. Amer. Statist. Assoc., 84, 406, 393-401 (1989) · Zbl 1248.62211
[9] Cressie, N.; Wikle, C. K., Statistics for Spatio-Temporal Data (2011), John Wiley and Sons: John Wiley and Sons Hoboken, NJ · Zbl 1273.62017
[10] Fang, K.; Mukerjee, R., Empirical-type likelihoods allowing posterior credible sets with frequentist validity: Higher-order asymptotics, Biometrika, 93, 3, 723-733 (2006) · Zbl 1109.62022
[11] Fay, R.; Herriot, R., Estimates of income for small places: an application of James-Stein procedures to census data, J. Amer. Statist. Assoc., 74, 269-277 (1979)
[12] Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Vehtari, A.; Rubin, D. B., Bayesian Data Analysis (2013), CRC Press: CRC Press Boca Raton, FL
[13] Getis, A.; Ord, J., The analysis of spatial association by use of distance statistics, Geograph. Anal., 23, 3, 190-205 (1992)
[14] Hughes, J.; Haran, M., Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, J. R. Stat. Soc. Ser. B Stat. Methodol., 75, 1, 139-159 (2013) · Zbl 07555442
[16] Kitamura, Y., Empirical likelihood methods with weakly dependent processes, Ann. Statist., 25, 5, 2084-2102 (1997) · Zbl 0881.62095
[17] Kolaczyk, E. D., Empirical likelihood for generalized linear models, Statist. Sinica, 4, 199-218 (1994) · Zbl 0824.62062
[18] Kulldorf, M., A spatial scan statistic, Comm. Statist. Theory Methods, 26, 6, 1481-1496 (1997) · Zbl 0920.62116
[19] Lazar, N., Bayesian empirical likelihood, Biometrika, 90, 2, 319-326 (2003) · Zbl 1034.62020
[20] Monahan, J.; Boos, D., Proper likelihoods for Bayesian analysis, Biometrika, 79, 2, 271-278 (1992) · Zbl 0751.62012
[21] Newey, W.; Smith, R., Higher order properties of GMM and generalized empirical likelihood estimators, Econometrica, 72, 1, 219-255 (2004) · Zbl 1151.62313
[22] Nordman, D., An empirical likelihood method for spatial regression, Metrika, 68, 3, 351-363 (2008) · Zbl 1247.62118
[23] Nordman, D. J.; Caragea, P. C., Point and interval estimation of variogram models using spatial empirical likelihood, J. Amer. Statist. Assoc., 103, 481, 350-361 (2008) · Zbl 1471.62302
[24] Owen, A., Empirical likelihood ratio confidence intervals for a single functional, Biometrika, 75, 2, 237-249 (1988) · Zbl 0641.62032
[25] Owen, A. B., Empirical Likelihood (2001), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 0989.62019
[26] Qin, J.; Lawless, J., Empirical likelihood and general estimating equations, Ann. Statist., 22, 1, 300-325 (1994) · Zbl 0799.62049
[28] Reich, B.; Hodges, J.; Zadnik, V., Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models, Biometrics, 62, 4, 1197-1206 (2006) · Zbl 1114.62124
[29] Robbins, C.; Bystrak, D.; Geissler, P., The Breeding Birds Survey: Its First Fifteen Years, 1965-1979, vol. 157 (1986), USDOI, Fish and Wildlife Resource Publication: USDOI, Fish and Wildlife Resource Publication Washington, D.C
[30] Rue, H.; Held, L., Gaussian Markov Random Fields: Theory and Applications (2005), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1093.60003
[31] Schennach, S., Bayesian exponentially tilted empirical likelihood, Biometrika, 92, 1, 31-46 (2005) · Zbl 1068.62035
[32] Schennach, S., Point estimation with exponentially tilted empirical likelihood, Ann. Statist., 35, 2, 634-672 (2007) · Zbl 1117.62024
[33] Sengupta, A.; Cressie, N., Empirical hierarchical modelling for count data using the spatial random effects model, Spatial Econom. Anal., 8, 3, 389-418 (2013)
[34] Smith, R., Alternative semi-parametric likelihood approaches to generalised method of moments estimation, Econom. J., 107, 441, 503-519 (1997)
[35] Symons, M. J.; Grimson, R. C.; Yuan, Y. C., Clustering of rare events, Biometrics, 39, 1, 193-205 (1983)
[36] Wall, M., A close look at the spatial structure implied by the CAR and SAR models, J. Statist. Plann. Inference, 121, 2, 311-324 (2004) · Zbl 1036.62097
[37] Wikle, C. K., Hierarchical Bayesian models for predicting the spread of ecological processes, Ecology, 84, 6, 1382-1394 (2003)
[38] Wikle, C. K., Hierarchical modeling with spatial data, (Gelfand, A.; Diggle, P. J.; Guttorp, P.; Fuentes., M., Handbook of Spatial Statistics (2010), CRC Press: CRC Press Boca Raton, FL)
[39] Wikle, C. K.; Berliner, L. M., Combining information across spatial scales, Techonmetrics, 47, 80-91 (2005)
[40] Zellner, A., Bayesian estimation and prediction using asymmetric loss functions, J. Amer. Statist. Assoc., 81, 394, 446-451 (1986) · Zbl 0603.62037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.