×

A fully quantum method of determination of penetrability and reflection coefficients in quantum FRW model with radiation. (English) Zbl 1190.83124

Summary: The closed Friedmann-Robertson-Walker model with quantization in the presence of the positive cosmological constant and radiation is studied. For analysis of tunneling probability for birth of an asymptotically de Sitter, inflationary universe as a function of the radiation energy, a new definition of a “free” wave propagating inside strong fields is proposed. On such a basis, tunneling boundary condition is corrected, penetrability and reflection relative to the barrier are calculated in fully quantum stationary approach. For the first time nonzero interference between the incident and reflected waves has been taken into account which turns out to play important role inside cosmological potentials and could be explained by non-locality of barriers in quantum mechanics. Inside the whole region of radiation energy the tunneling probability for the birth of the inflationary universe is found to be close to its value obtained in the semiclassical approach. The reflection from the barrier is determined for the first time (which differs essentially on 1 at the energy of radiation close to the barrier height). The proposed method could be easily generalized on the cosmological models with barriers of arbitrary shape, as demonstrated for the FRW model with included Chaplygin gas. The result is stable for variations of the studied barriers, accuracy is found to be 11-18 digits for all coefficients and energies below the barrier height.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
85A25 Radiative transfer in astronomy and astrophysics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRev.160.1113 · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[2] Wheeler J. A., Batelle Rencontres (1968)
[3] DOI: 10.1016/0370-2693(82)90866-8 · doi:10.1016/0370-2693(82)90866-8
[4] DOI: 10.1103/PhysRevD.28.2960 · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[5] DOI: 10.1007/BF02790571 · doi:10.1007/BF02790571
[6] Zel’dovich Y. B., Sov. Astron. Lett. 10 pp 135–
[7] DOI: 10.1016/0370-2693(84)90088-1 · doi:10.1016/0370-2693(84)90088-1
[8] DOI: 10.1103/PhysRevD.30.509 · doi:10.1103/PhysRevD.30.509
[9] DOI: 10.1103/PhysRevD.33.3560 · doi:10.1103/PhysRevD.33.3560
[10] DOI: 10.1103/PhysRevD.25.2065 · doi:10.1103/PhysRevD.25.2065
[11] DOI: 10.1103/PhysRevD.50.2581 · doi:10.1103/PhysRevD.50.2581
[12] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Course of Theoretical Physics 3 (Nauka, Mockva, 1989) p. 768.
[13] DOI: 10.1103/PhysRevD.75.104004 · doi:10.1103/PhysRevD.75.104004
[14] DOI: 10.1140/epjc/s10052-008-0723-2 · Zbl 1189.83105 · doi:10.1140/epjc/s10052-008-0723-2
[15] V. A. Rubakov, Introduction to Cosmology, RTN Winter School of Strings, Supergravity and Gauge Theories (SISSA, Trieste, Italy, 2005) p. 58, http://pos.sissa.it.
[16] DOI: 10.1016/B978-0-12-450145-4.50004-9 · doi:10.1016/B978-0-12-450145-4.50004-9
[17] R. H. Brandenberger, Inflationary Cosmology: Progress and Problems, Lectures at the International School on Cosmology (Kluwer, Dordrecht, 2000) p. 48.
[18] DOI: 10.1103/PhysRevD.66.083516 · doi:10.1103/PhysRevD.66.083516
[19] Zakhariev B. N., Physics of Elementary Particles and Atomic Nuclei 21 pp 914–
[20] Chaplygin S., Sci. Mom. Moskow Univ. Math. Phys. 21 pp 1–
[21] DOI: 10.1016/S0370-2693(01)00571-8 · Zbl 0969.83556 · doi:10.1016/S0370-2693(01)00571-8
[22] DOI: 10.1016/S0370-2693(02)01716-1 · Zbl 0995.83512 · doi:10.1016/S0370-2693(02)01716-1
[23] DOI: 10.1103/PhysRevD.66.043507 · doi:10.1103/PhysRevD.66.043507
[24] DOI: 10.1103/PhysRevD.71.043517 · doi:10.1103/PhysRevD.71.043517
[25] DOI: 10.1103/PhysRevD.72.103516 · doi:10.1103/PhysRevD.72.103516
[26] DOI: 10.1103/PhysRevD.71.063521 · doi:10.1103/PhysRevD.71.063521
[27] DOI: 10.1103/PhysRevD.58.103514 · doi:10.1103/PhysRevD.58.103514
[28] DOI: 10.1103/PhysRevD.67.063517 · doi:10.1103/PhysRevD.67.063517
[29] Olkhovsky V. S., Ukr. Phys. J. 45 pp 1262–
[30] Maydanyuk S. P., J. Phys. Stud. 6 pp 1–
[31] Maydanyuk S. P., Probl. At. Sci. Tech. 1 pp 16–
[32] DOI: 10.1007/s10702-006-0903-y · Zbl 1102.81342 · doi:10.1007/s10702-006-0903-y
[33] DOI: 10.1119/1.1972543 · doi:10.1119/1.1972543
[34] DOI: 10.1103/RevModPhys.39.245 · doi:10.1103/RevModPhys.39.245
[35] DOI: 10.1119/1.16095 · doi:10.1119/1.16095
[36] DOI: 10.1103/PhysRevE.67.016609 · doi:10.1103/PhysRevE.67.016609
[37] DOI: 10.1103/PhysRevLett.59.262 · doi:10.1103/PhysRevLett.59.262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.