×

Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the orthoglide. (English) Zbl 1377.70017

Summary: This paper deals with the multi-objective path placement optimization for Parallel Kinematics Machines (PKMs) based on energy consumption, actuator torques and shaking forces. It aims at determining the optimal location of a given test path within the workspace of a PKM in order to minimize the electric energy used by the actuators, their maximal torque and the shaking forces subject to the kinematic, dynamic and geometric constraints. The proposed methodology is applied to the Orthoglide, a three-degree-of-freedom translational PKM, as an illustrative example.

MSC:

70B15 Kinematics of mechanisms and robots
90C90 Applications of mathematical programming

Software:

modeFrontier
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Ata, A. A.: Optimal trajectory planning of manipulators: a review, Journal of engineering science and technology 2, No. 1, 32-54 (2007)
[2] Tian, L.; Collins, C.: ”Motion planning for redundant manipulators using a floating point genetic algorithm”, journal of intelligent and robotic systems, Theory and applications 38, No. 3-4, 297-312 (2003)
[3] Chan, K. K.; Zalzala, A. M. S.: Genetic-based minimum time trajectory planning of articulated manipulators with torque constraints, , 4/1-4/3 (1993)
[4] Pateloup, V.; Duc, E.; Ray, P.: Corner optimization for pocket machining, International journal of machine tools and manufacture 44(12-13), 1343-1353 (2004)
[5] Field, G.: Iterative dynamic programming, an approach to minimum energy trajectory planning for robotic manipulators, Proc. of the IEEE int. Conf. on robotics and automation, Minneapolis 3, 2755-2760 (1995)
[6] Hirakawa, A.; Kawamura, A.: Trajectory planning of redundant manipulators for minimum energy consumption without matrix inversion, , 2415-2420 (1997)
[7] Nelson, B.; Donath, M.: Optimizing the location of assembly tasks in a manipulator’s workspace, Journal of robotic system 7, No. 6, 791-811 (1990) · Zbl 0708.70036 · doi:10.1002/rob.4620070602
[8] Aspragathos, N. A.: Optimal location of path following tasks in the workspace of a manipulator using genetic algorithm, , 179-188 (1996)
[9] Aspragathos, N. A.; Foussias, S.: Optimal location of a robot path when considering velocity performance, Robotica 20, 139-147 (2002)
[10] Fardanesh, B.; Rastegar, J.: Minimum cycle time location of a task in the workspace of a robot arm, , 2280-2283 (1988)
[11] Feddema, J. T.: Kinematically optimal robot placement for minimum time coordinated motion, , 22-28 (1996)
[12] Hemmerle, J. S.; Prinz, F. B.: Optimal path placement for kinematically redundant manipulators, Proc. of the IEEE int. Conf. on robotics and automation 2, 1234-1244 (1991)
[13] Pamanes, G. J. A.; Zeghloul, S.: Optimal placement of robotic manipulators using multiple kinematic criteria, Proc. of the 1991 IEEE int. Conf. on robotics and automation 1, 933-938 (1991)
[14] Pamanes, G. J. A.; Zeghloul, S.; Lallemand, J.: On the optimal placement and task compatibility of manipulators, Proc. of the IEEE int. Conf. on advanced robotics-’91 ICAR 2, 1694-1697 (1991)
[15] Pamanes, G. J. A.; Cuan-Duron, E.; Zeghloul, S.: Single and multiobjective optimization of path placement for redundant robotic manipulators, Ingeniería investigación y tecnología 9(3), 211-237 (2008)
[16] Wang, Z.; Wang, C.; Liu, W.; Lei, Y.: A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools, Mechanism and machine theory 36, No. 5, 605-622 (2001) · Zbl 1140.70368 · doi:10.1016/S0094-114X(01)00009-X
[17] Ur-Rehman, R.; Caro, S.; Chablat, D.; Wenger, P.: Path placement optimization of manipulators based on energy consumption: application to the orthoglide 3-axis, Transactions of the canadian society for mechanical engineering 33, No. 3, 523-541 (2009)
[18] Lacroux, G.: LES actionneurs électriques pour la robotique et LES asservissements, (1994)
[19] Chiou, S. T.; Bai, G. J.; Chang, W. K.: Optimum balancing design of the drag-link drive of mechanical presses for precision cutting, International journal of machine tools and manufacture 38(3), 131-141 (1998)
[20] Wu, Y.; Gosselin, C. M.: Synthesis of reactionless spatial 3-dof and 6-dof mechanisms without separate counter-rotations, The international journal of robotics research 23, No. 6, 625-642 (2004)
[21] Moore, B.; Schicho, J.; Gosselin, C.: Determination of the complete set of shaking force and shaking moment balanced planar four-bar linkages, Mechanism and machine theory 44, No. 7, 1338-1347 (2009) · Zbl 1178.70045 · doi:10.1016/j.mechmachtheory.2008.10.004
[22] Clavel, R.: Delta, a fast robot with parallel geometry, , 91-100 (April 1988)
[23] Wenger, P.; Chablat, D.: Kinematic analysis of a new parallel machine tool: the orthoglide, Advances in robot kinematic, 305-314 (2000)
[24] Pashkevich, A.; Chablat, D.; Wenger, P.: Stiffness analysis of overconstrained parallel manipulators, Mechanism and machine theory 44(5), 966-982 (May 2009) · Zbl 1350.70016
[25] Chablat, D.; Wenger, P.: Architecture optimization, of a 3-DOF parallel mechanism for machining applications, the orthoglide, IEEE transactions on robotics and automation 19, 403-410 (2003)
[26] Guégan, S.; Khalil, W.; Lemoine, Ph.: Identification of the dynamic parameters of the orthoglide, IEEE int. Conf. on robotics and automation, Taipei, Taiwan 3, 3272-3277 (Sept. 14-19 2003)
[27] Guegan, S.; Khalil, W.: Dynamic modeling of the orthoglide, , 387-396 (2002)
[28] Majou, F.; Gosselin, C.; Wenger, P.; Chablat, D.: Parametric stiffness analysis of the orthoglide, Mechanism and machine theory 42(3), 296-311 (March 2007) · Zbl 1107.70005 · doi:10.1016/j.mechmachtheory.2006.03.018
[29] modeFRONTIER, Version 4.0.3, ESTECO, Trieste, Italy, URL http://www.esteco.it.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.