×

On generalized Cosserat-type theories of plates and shells: a short review and bibliography. (English) Zbl 1184.74042

Summary: One of the research direction of Horst Lippmann during his whole scientific career was devoted to the possibilities to explain complex material behavior by generalized continua models. A representative of such models is the Cosserat continuum. The basic idea of this model is the independence of translations and rotations (and by analogy, the independence of forces and moments). With the help of this model some additional effects in solid and fluid mechanics can be explained in a more satisfying manner. They are established in experiments, but not presented by the classical equations. In this paper the Cosserat-type theories of plates and shells are debated as a special application of the Cosserat theory.

MSC:

74K20 Plates
74K25 Shells
74A35 Polar materials
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Adhikary D.P., Dyskin A.V.: A continuum model of layered rock masses with non-associative joint plasticity. Int. J. Numer. Anal. Methods Geomech. 22(4), 245–261 (1998) · Zbl 0948.74032 · doi:10.1002/(SICI)1096-9853(199804)22:4<245::AID-NAG916>3.0.CO;2-R
[2] Adhikary D.P., Guo H.: An orthotropic Cosserat elasto-plastic model for layered rocks. Rock Mech. Rock Eng. 35(3), 161–170 (2002) · doi:10.1007/s00603-001-0020-y
[3] Aero E.L., Kuvshinskii E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2(7), 1272–1281 (1961)
[4] Aero E.L., Kuvshinskii E.V.: Continuum theory of asymmetric elasticity. Equilibrium of an isotropic body (in Russian). Fizika Tverdogo Tela 6, 2689–2699 (1964)
[5] Aero E.L., Bulygin A.N., Kuvshinskii E.V.: Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–346 (1965) · Zbl 0141.42603 · doi:10.1016/0021-8928(65)90035-3
[6] Aganović I., Tambača J., Tutek Z.: Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elast. 84, 131–152 (2006) · Zbl 1158.74401 · doi:10.1007/s10659-006-9060-6
[7] Allen S.J., DeSilva C.N., Kline K.A.: A theory of simple deformable directed fluids. Phys. Fluids 10(12), 2551–2555 (1967) · Zbl 0173.27702 · doi:10.1063/1.1762075
[8] Altenbach H.: Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ingenieur Archiv. 58, 215–228 (1988) · Zbl 0661.73032 · doi:10.1007/BF00534332
[9] Altenbach H., Eremeyev V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008) · Zbl 1161.74426 · doi:10.1007/s00419-007-0192-3
[10] Altenbach H., Eremeyev V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204(3–4), 137–154 (2009) · Zbl 1165.74030 · doi:10.1007/s00707-008-0053-3
[11] Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM 89(4), 242–256 (2009) · Zbl 1160.74030 · doi:10.1002/zamm.200800207
[12] Altenbach H., Zhilin P.A.: A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11(4), 107–148 (1988)
[13] Altenbach H., Zhilin P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds) Critical Review of the Theories of Plates and Shells. Lecture Notes in Applied and Computational Mechanics, vol. 16, pp. 1–12. Springer, Berlin (2004) · Zbl 1182.74142
[14] Altenbach H., Naumenko K., Zhilin P.: A micro-polar theory for binary media with application to phase-transitional flow of fibre suspensions. Contin. Mech. Thermodyn. 15, 539–570 (2003) · Zbl 1063.76100 · doi:10.1007/s00161-003-0133-5
[15] Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rendón, L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. (2009). doi: 10.1007/s00419-009-0314-1 · Zbl 1271.74251
[16] Ambartsumian S.A.: The theory of transverse bending of plates with asymmetric elasticity. Mech. Compos. Mater. 32(1), 30–38 (1996) · doi:10.1007/BF02254645
[17] Ambartsumian S.A.: The Micropolar Theory of Plates and Shells (in Russian). NAN Armenii, Yerevan (1999)
[18] Antman S.S.: Global properties of buckled states of plates that can suffer thickness changes. Arch. Ration. Mech. Anal. 110(2), 103–117 (1990) · Zbl 0698.73035 · doi:10.1007/BF00873493
[19] Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer Science Media, New York (2005) · Zbl 1098.74001
[20] Ariman T.: On circular micropolar plates. Ingenieur Archiv. 37(3), 156–160 (1968) · Zbl 0164.27403 · doi:10.1007/BF00532605
[21] Başar Y.: A consistent theory of geometrically non-linear shells with an independent rotation vector. Int. J. Solids Struct. 23(10), 1401–1415 (1987) · Zbl 0619.73032 · doi:10.1016/0020-7683(87)90005-9
[22] Badur J., Pietraszkiewicz W.: On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations. In: Pietraszkiewicz, W. (eds) Finite Rotations in Structural Mechanics, pp. 19–32. Springer, Wien (1986) · Zbl 0606.73079
[23] Becker M., Lippmann H.: Plane plastic flow of granular model material. Experimental setup and results. Ingenieur Archiv. 29(6), 829–846 (1977)
[24] Besdo D.: Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mech. 20, 105–131 (1974) · Zbl 0294.73003 · doi:10.1007/BF01374965
[25] Bhattacharya K., James R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47(3), 531–576 (1999) · Zbl 0960.74046 · doi:10.1016/S0022-5096(98)00043-X
[26] Bîrsan M.: On a thermodynamic theory of porous Cosserat elastic shells. J. Thermal Stress. 29(9), 879–899 (2006) · doi:10.1080/01495730600705521
[27] Bîrsan M.: On the theory of elastic shells made from a material with voids. Int. J. Solids Struct. 43(10), 3106–3123 (2006) · Zbl 1120.74611 · doi:10.1016/j.ijsolstr.2005.05.028
[28] Bîrsan M.: On Saint-Venant’s principle in the theory of Cosserat elastic shells. Int. J. Eng. Sci. 45(2–8), 187–198 (2007) · Zbl 1213.74214 · doi:10.1016/j.ijengsci.2007.03.003
[29] Bîrsan M.: Inequalities of Korn’s type and existence results in the theory of Cosserat elastic shells. J. Elast. 90(3), 227–239 (2008) · Zbl 1133.74029 · doi:10.1007/s10659-007-9140-2
[30] Bîrsan M.: On Saint-Venant’s problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells. Int. J. Eng. Sci. 47(1), 21–38 (2009) · Zbl 1213.74142 · doi:10.1016/j.ijengsci.2008.06.015
[31] Bîrsan M.: Thermal stresses in cylindrical Cosserat elastic shells. Eur. J. Mech. A Solids 28(1), 94–101 (2009) · Zbl 1155.74377 · doi:10.1016/j.euromechsol.2008.03.001
[32] Bogdanova-Bontcheva N., Lippmann H.: Rotationenssymmetrisches ebenes Fließen eines granularen Modellmaterials. Acta Mech. 21(1–2), 93–113 (1975) · doi:10.1007/BF01172830
[33] Boschi E.: Lamb and Love wave-propagation in an infinite micropolar elastic plate. Ann. Geofisica 26(2–3), 341–355 (1973)
[34] Capriz G.: Continua with Microstructure. Springer, New York (1989) · Zbl 0676.73001
[35] Capriz G., Giovine P., Mariano P.M. (eds): Mathematical Models of Granular Matter. Lecture Notes in Mathematics. Springer, Berlin (2008) · Zbl 1138.76005
[36] Chambon R., Caillerie D., Matsuchima T.: Plastic continuum with micro structure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38(46–47), 8503–8527 (2001) · Zbl 1047.74522 · doi:10.1016/S0020-7683(01)00057-9
[37] Chełmiński K., Neff P.: A note on approximation of Prandtl–Reuss plasticity through Cosserat plasticity. Q. Appl. Math. 66(2), 351–357 (2008) · Zbl 1185.35277
[38] Chełmiński K., Neff P.: Hoc(1)-stress and strain regularity in Cosserat plasticity. ZAMM 89, 257–266 (2009) · Zbl 1160.74007 · doi:10.1002/zamm.200800123
[39] Chinosi C., Della Croce L., Scapolla T.: Hierarchic finite elements for thin Naghdi shell model. Int. J. Solids Struct. 35(16), 1863–1880 (1998) · Zbl 0944.74633 · doi:10.1016/S0020-7683(97)83328-8
[40] Chowdhur K.L., Glockner P.G.: Bending of an annular elastic Cosserat plate. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 21(3), 211–218 (1973) · Zbl 0265.73055
[41] Chróścielewski J.: Rodzina elementów skończonych klasy C 0 w nieliniowej sześcioparametrowej teorii powłok. Zesz Nauk Politechniki Gdańskiej LIII(540), 1–291 (1996)
[42] Chróścielewski J., Makowski J., Stumpf H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Methods Appl. Mech. Eng. 141, 1–46 (1997) · Zbl 0898.73061 · doi:10.1016/S0045-7825(96)01046-8
[43] Chróścielewski J., Makowski J., Pietraszkiewicz W.: Non-linear dynamics of flexible shell structures. Comp. Assisted Mech. Eng. Sci. 9, 341–357 (2002) · Zbl 1011.74027
[44] Chró ścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych. Nieliniowa teoria i metoda elementów skończonych. Wydawnictwo IPPT PAN, Warszawa (2004)
[45] Ciarlet P.: Mathematical Elasticity, vol. II. Theory of Plates. Elsevier, Amsterdam (1997) · Zbl 0888.73001
[46] Ciarlet P.: Mathematical Elasticity, vol. III. Theory of Shells. Elsevier, Amsterdam (2000) · Zbl 0953.74004
[47] Cielecka I., Woźniak M., Woźniak C.: Elastodynamic behaviour of honeycomb cellular media. J. Elast. 60, 1–17 (2000) · Zbl 0976.74015 · doi:10.1023/A:1007634916326
[48] Cohen H., Thomas R.S.D.: Transient waves in inhomogeneous isotropic elastic plates. Acta Mech. 53(3–4), 141–161 (1984) · Zbl 0553.73020 · doi:10.1007/BF01177947
[49] Cohen H., Thomas R.S.D.: Transient waves in inhomogeneous anisotropic elastic plates. Acta Mech. 58(1–2), 41–57 (1986) · Zbl 0578.73034 · doi:10.1007/BF01177105
[50] Cohen H., Wang C.C.: A mathematical analysis of the simplest direct models for rods and shells. Arch. Ration. Mech. Anal. 108(1), 35–81 (1989) · Zbl 0697.73001 · doi:10.1007/BF01055752
[51] Coleman B.D., Feinberg M., Serrin J. (eds): Analysis and Thermodynamics–A Collection of Papers Dedicated to W. Noll. Springer, Berlin (1987)
[52] Constanda C.: Complex variable treatment of bending of micropolar plates. Int. J. Eng. Sci. 15(11), 661–669 (1977) · Zbl 0364.73051 · doi:10.1016/0020-7225(77)90017-9
[53] Cosserat E., Cosserat F.: Sur la théorie de l’elasticité. Ann. Toulouse 10, 1–116 (1896) · JFM 27.0684.06
[54] Cosserat E., Cosserat F.: Théorie des corps déformables. Herman et Fils, Paris (1909) · JFM 40.0862.02
[55] Cramer H., Findeiss R., Steinl G., Wunderlich W.: An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena. Comput. Methods Appl. Mech. Eng. 176(1–4), 187–202 (1999) · Zbl 1011.74067 · doi:10.1016/S0045-7825(98)00336-3
[56] DeBorst R.: Numerical modeling of bifurcation and localization in cohesive-frictional materials. Pure Appl. Geophys. 137(4), 367–390 (1991) · doi:10.1007/BF00879040
[57] DeBorst R.: A generalization of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103(3), 347–362 (1993) · Zbl 0777.73014 · doi:10.1016/0045-7825(93)90127-J
[58] DeSilva C.N., Tsai P.J.: A general theory of directed surfaces. Acta Mech. 18(1–2), 89–101 (1973) · Zbl 0272.73002 · doi:10.1007/BF01173460
[59] Diebels S.: A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34, 193–208 (1999) · doi:10.1023/A:1006517625933
[60] Diebels S.: A macroscopic description of the quasi-static behavior of granular materials based on the theory of porous media. Granul. Matter 2, 143–152 (2000) · doi:10.1007/s100359900034
[61] Diebels S.: Micropolar mixture models on the basis of the theory of porous media. In: Ehlers, W., Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. 121–145. Springer, Berlin (2002) · Zbl 1179.74035
[62] Diebels S., Steeb H.: Stress and couple stress in foams. Comput. Mater. Sci. 28, 714–722 (2003) · doi:10.1016/j.commatsci.2003.08.025
[63] Diepolder W., Mannl V., Lippmann H.: The Cosserat continuum, a model for grain rotations in metals. Int. J. Plasticity 7(4), 313–328 (2001) · doi:10.1016/0749-6419(91)90038-Z
[64] Dietsche A., Willam K.: Boundary effects in elasto-plastic Cosserat continua. Int. J. Solids Struct. 34(7), 877–893 (1997) · Zbl 0944.74507 · doi:10.1016/S0020-7683(96)00098-4
[65] Dietsche A., Steinmann P., Willam K.: Micropolar elastoplasticity and its role in localization. Int. J. Plasticity 9(7), 813–831 (1993) · Zbl 0794.73004 · doi:10.1016/0749-6419(93)90053-S
[66] Dillard T., Forest S., Ienny P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A-Solids 25(3), 526–549 (2006) · Zbl 1094.74047 · doi:10.1016/j.euromechsol.2005.11.006
[67] Dłu\.zevski P.H.: Finite deformations of polar elastic media. Int. J. Solids Struct. 30, 2277–2285 (1993) · Zbl 0781.73006 · doi:10.1016/0020-7683(93)90087-N
[68] Dyszlewicz J.: Micropolar Theory of Elasticity. Springer, Berlin (2004) · Zbl 1057.74003
[69] Ehlers W.: Theoretical and numerical modelling of granular liquid-saturated elasto-plastic porous media. ZAMM 77(Suppl. 2), S401–S404 (1997) · Zbl 0900.73027
[70] Ehlers W.: On liquid-saturated and empty granular elasto-plastic solid materials accounting for micropolar rotations. In: Bruhns, O.T., Stein, E. (eds) IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity, pp. 271–280. Kluwer, Dordrecht (1998)
[71] Ehlers W., Volk W.: On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohesive-Frictional Mater. 2(4), 301–320 (1997) · doi:10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D
[72] Ehlers W., Ramm E., Diebels S., d’Addetta G.D.A.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003) · Zbl 1053.74002 · doi:10.1016/S0020-7683(03)00418-9
[73] Erbay H.A.: An asymptotic theory of thin micropolar plates. Int. J. Eng. Sci. 38(13), 1497–1516 (2000) · Zbl 1210.74109 · doi:10.1016/S0020-7225(99)00118-4
[74] Eremeyev V.A.: Acceleration waves in micropolar elastic media. Doklady Phys. 50(4), 204–206 (2005) · doi:10.1134/1.1922562
[75] Eremeyev V.A.: Nonlinear micropolar shells: theory and applications. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 11–18. Taylor & Francis, London (2005)
[76] Eremeyev V.A., Pietraszkiewicz W.: The non-linear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004) · Zbl 1058.74058 · doi:10.1023/B:ELAS.0000026106.09385.8c
[77] Eremeyev V.A., Pietraszkiewicz W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006) · Zbl 1105.74019 · doi:10.1007/s10659-006-9075-z
[78] Eremeyev V.A., Pietraszkiewicz W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009) · Zbl 1273.74371
[79] Eremeyev V.A., Zubov L.M.: On the stability of elastic bodies with couple stresses (in Russian). Mech. Solids 3, 181–190 (1994)
[80] Eremeyev V.A., Zubov L.M.: On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87(2), 94–101 (2007) · Zbl 1107.74030 · doi:10.1002/zamm.200610304
[81] Eremeyev V.A., Zubov L.M.: Mechanics of Elastic Shells (in Russian). Nauka, Moscow (2008)
[82] Ericksen J.L.: Wave propagation in thin elastic shells. J. Elast. 43(3), 167–178 (1971) · Zbl 0225.73069
[83] Ericksen J.L.: The simplest problems for elastic Cosserat surfaces. J. Elast. 2(2), 101–107 (1972) · doi:10.1007/BF00046058
[84] Ericksen J.L.: Symmetry transformations for thin elastic shells. Arch. Ration. Mech. Anal. 47, 1–14 (1972) · Zbl 0242.73045 · doi:10.1007/BF00252184
[85] Ericksen J.L.: Apparent symmetry of certain thin elastic shells. J. Mećanique 12, 12–18 (1973) · Zbl 0256.73034
[86] Ericksen J.L.: Plane infinitesimal waves in homogeneous elastic plates. J. Elast. 3(3), 161–167 (1973) · doi:10.1007/BF00052890
[87] Ericksen J.L.: Simpler problems for elastic Cosserat surfaces. J. Elast. 7(1), 1–11 (1977) · Zbl 0371.73049 · doi:10.1007/BF00041126
[88] Ericksen J.L.: Introduction to the Thermodynamics of Solids, 2nd edn. Springer, New York (1998) · Zbl 0902.73001
[89] Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958) · Zbl 0081.39303 · doi:10.1007/BF00298012
[90] Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966) · Zbl 0145.21302
[91] Eringen A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966) · Zbl 0145.21302
[92] Eringen A.C.: Linear theory of micropolar viscoelasticity. Int. J. Eng. Sci. 5(2), 191–204 (1967) · Zbl 0146.21502 · doi:10.1016/0020-7225(67)90004-3
[93] Eringen A.C.: Theory of micropolar plates. ZAMP 18(1), 12–30 (1967) · Zbl 0146.21502 · doi:10.1007/BF01593891
[94] Eringen A.C.: A unified continuum theory of liquid crystals. ARI 73–84, 369–374 (1997)
[95] Eringen A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999) · Zbl 0953.74002
[96] Eringen A.C.: Microcontinuum Field Theory. II. Fluent Media. Springer, New York (2001) · Zbl 0972.76001
[97] Eringen A.C., Maugin G.A.: Electrodynamics of Continua. Springer, New York (1990)
[98] Erofeev V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)
[99] Etse G., Nieto M.: Cosserat continua-based micro plane modelling. Theory and numerical analysis. Latin Am. Appl. Res. 34(4), 229–240 (2004)
[100] Etse G., Nieto M., Steinmann P.: A micropolar microplane theory. Int. J. Eng. Sci. 41(13–14), 1631–1648 (2003) · Zbl 1211.74017 · doi:10.1016/S0020-7225(03)00031-4
[101] Farshad M., Tabarrok B.: Dualities in analysis of Cosserat plate. Mech. Res. Commun. 3(5), 399–406 (1976) · Zbl 0375.73058 · doi:10.1016/0093-6413(76)90101-4
[102] Fatemi J., Van Keulen F., Onck P.R.: Generalized continuum theories: application to stress analysis in bone. Meccanica 37(4–5), 385–396 (2002) · Zbl 1141.74344 · doi:10.1023/A:1020839805384
[103] Forest S.: Modeling slip, kink and smear banding in classical and generalized single crystal plasticity. Acta Mater. 46(9), 3265–3281 (1998) · doi:10.1016/S1359-6454(98)00012-3
[104] Forest S., Sedláček R.: Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized continuum approaches. Philos. Mag. 83(2), 245–276 (2003) · doi:10.1080/0141861021000022255
[105] Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160(1–2), 71–111 (2003) · Zbl 1064.74009 · doi:10.1007/s00707-002-0975-0
[106] Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006) · Zbl 1102.74003 · doi:10.1016/j.ijsolstr.2006.05.012
[107] Forest S., Barbe F., Cailletaud G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37(46–47), 7105–7126 (2000) · Zbl 0998.74019 · doi:10.1016/S0020-7683(99)00330-3
[108] Forest S., Boubidi P., Sievert R.: Strain localization patterns at a crack tip in generalized single crystal plasticity. Scr. Mater. 44(6), 953–958 (2001) · doi:10.1016/S1359-6462(00)00684-9
[109] Fox D.D., Simo J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98(3), 329–343 (1992) · Zbl 0764.73050 · doi:10.1016/0045-7825(92)90002-2
[110] Fox D.D., Raoult A., Simo J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124(2), 157–199 (1993) · Zbl 0789.73039 · doi:10.1007/BF00375134
[111] Friesecke G., James R.D., Mora M.G., Müller S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris Ser. I 334, 173–178 (2002) · Zbl 1012.74043
[112] Friesecke G., James R.D., Mora M.G., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. LV, 1461–1506 (2002) · Zbl 1021.74024 · doi:10.1002/cpa.10048
[113] Friesecke G., James R.D., Mora M.G., Müller S.: The Föppl–von Karman plate theory as a low energy Gamma limit of nonlinear elasticity. C. R. Acad. Sci. Paris Ser. I 335, 201–206 (2002) · Zbl 1041.74043
[114] Friesecke G., James R.D., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris Ser. I 336, 697–702 (2003) · Zbl 1140.74481
[115] Gauthier R.D., Jahsman W.E.: Quest for micropolar elastic-constants. Trans. ASME J. Appl. Mech. 42(2), 369–374 (1975) · Zbl 0526.73004 · doi:10.1115/1.3423583
[116] Gauthier R.D., Jahsman W.E.: Quest for micropolar elastic-constants. 2. Arch. Mech. 33(5), 717–737 (1981) · Zbl 0526.73004
[117] Georgiadis H.G., Velgaki E.G.: High-frequency Rayleigh waves in materials with micro-structure and couple–stress effects. Int. J. Solids Struct. 40(10), 2501–2520 (2003) · Zbl 1087.74567 · doi:10.1016/S0020-7683(03)00054-4
[118] Gevorkyan G.A.: The basic equations of flexible plates for a medium of Cosserat. Int. Appl. Mech. 3(11), 41–45 (1967)
[119] Glockner P.G., Malcolm D.J.: Cosserat surface–model for idealized sandwich shells. ZAMM 54(4), T78 (1974) · Zbl 0302.73048
[120] Grammenoudis P., Tsakmakis C.: Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Contin. Mech. Thermodyn. 13(5), 325–363 (2001) · Zbl 1012.74009
[121] Grammenoudis P., Tsakmakis C.: Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int. J. Numer. Methods Eng. 62(12), 1691–1720 (2005) · Zbl 1121.74474 · doi:10.1002/nme.1243
[122] Grammenoudis P., Tsakmakis C.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2053), 189–205 (2005) · Zbl 1121.74474 · doi:10.1098/rspa.2004.1377
[123] Grammenoudis P., Tsakmakis C.: Isotropic hardening in micropolar plasticity. Arch. Appl. Mech. 79(4), 323–334 (2009) · Zbl 1178.74030 · doi:10.1007/s00419-008-0236-3
[124] Green A.E., Naghdi P.M.: Linear theory of an elastic Cosserat plate. Proc. Camb. Philos. Soc. Math. Phys. Sci. 63(2), 537–550 (1967) · Zbl 0161.44802 · doi:10.1017/S0305004100041487
[125] Green A.E., Naghdi P.M.: Micropolar and director theories of plates. Q. J. Mech. Appl. Math. 20, 183–199 (1967) · Zbl 0148.19302 · doi:10.1093/qjmam/20.2.183
[126] Green A.E., Naghdi P.M.: The linear elastic Cosserat surface and shell theory. Int. J. Solids Struct. 4(6), 585–592 (1968) · Zbl 0172.50901 · doi:10.1016/0020-7683(68)90075-9
[127] Green A.E., Naghdi P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970) · Zbl 0188.57001 · doi:10.1016/0020-7683(70)90021-1
[128] Green A.E., Naghdi P.M.: On superposed small deformations on a large deformation of an elastic Cosserat surface. J. Elast. 1(1), 1–17 (1971) · doi:10.1007/BF00045695
[129] Green A.E., Naghdi P.M.: Derivation of shell theories by direct approach. Trans. ASME J. Appl. Mech. 41(1), 173–176 (1974) · Zbl 0317.73057 · doi:10.1115/1.3423218
[130] Green A.E., Naghdi P.M.: On thermal effects in the theory of shells. Proc. R. Soc. Lond. A 365A, 161–190 (1979) · Zbl 0403.73090
[131] Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964) · Zbl 0133.17604 · doi:10.1007/BF00253051
[132] Green A.E., Naghdi P.M., Wainwright W.L.: A general theory of a Cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965) · doi:10.1007/BF00253138
[133] Grekova E., Zhilin P.: Basic equations of Kelvins medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001) · Zbl 1051.74002 · doi:10.1023/A:1014828612841
[134] Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of vibration of beams, plates and shells (in Russian). In: Itogi nauki i tekhniki, Mekhanika tverdogo deformiruemogo tela, vol. 5. VINITI, Moskva (1973)
[135] Grioli G.: Elasticita asimmetrica. Ann. Math. Pura Appl. 50, 389–417 (1960) · Zbl 0123.40504 · doi:10.1007/BF02414525
[136] Grioli G.: Contributo per una formulazione di tipo integrale della meccanica dei continui di Cosserat. Ann. Math. Pura Appl. 111(1), 389–417 (1976) · Zbl 0352.73010 · doi:10.1007/BF02411817
[137] Günther W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigschen Wissenschaftlichen Gesellschaft Göttingen 10, 196–213 (1958) · Zbl 0102.17302
[138] Gürgöze dT.: Thermostatics of an elastic Cosserat plate containing a circular hole. Proc. Camb. Philos. Soc. Math. Phys. Sci. 70(JUL), 169–174 (1971) · doi:10.1017/S0305004100049768
[139] Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[140] Hamel G.: Elementare Mechanik: ein Lehrbuch enthaltend: eine Begründung der allgemeinen Mechanik, die Mechanik der Systeme starrer Körper, die synthetischen und die Elemente der analytischen Methoden, sowie eine Einführung in die Prinzipien der Mechanik deformierbarer Systeme. Teubner, Leipzig (1912) · JFM 43.0764.01
[141] Hamel G.: Theoretische Mechanik: eine einheitliche Einführung in die gesamte Mechanik. Springer, Berlin (1949) · Zbl 0036.24301
[142] Harris D., Grekova E.F.: A hyperbolic well-posed model for the flow of granular materials. J. Eng. Math. 52(1–3), 107–135 (2005) · Zbl 1080.74017
[143] Herglotz G.: Vorlesungen über Mechanik der Kontinua, Teubner-Archiv zur Mathematik, vol. 3. B.G. Teubner, Leipzig (1985) · Zbl 0599.73003
[144] Hodges D.H., Atilgan A.R., Danielson D.A.: A geometrically nonlinear theory of elastic plates. Trans. ASME J. Appl. Mech. 60(1), 109–116 (2004) · Zbl 0818.73041 · doi:10.1115/1.2900732
[145] Huang W.X., Bauer E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Methods Geomech. 27(4), 325–352 (2003) · Zbl 1054.74044 · doi:10.1002/nag.275
[146] Ieşan D.: On the linear theory of micropolar elasticity. Int. J. Eng. Sci. 7(12), 1213–1220 (1969) · Zbl 0181.53806 · doi:10.1016/0020-7225(69)90030-5
[147] Ieşan D.: Saint-Venant’s Problem. Lecture Notes in Mathematics. Springer, Berlin (1987) · Zbl 0625.73030
[148] Itou S., Atsumi A.: Effect of couple–stresses on elastic Cosserat plate with loads travelling at uniform velocity along bounding surfaces. Archiwum Mechaniki Stosowanej 22(4), 375–384 (1970) · Zbl 0205.56205
[149] Ivanova E.A., Krivtsov A.M., Morozov N.F., Firsova A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003)
[150] Ivanova E.A., Krivtsov A.M., Morozov N.F., Firsova A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Doklady Phys. 48(8), 455–458 (2003) · doi:10.1134/1.1606763
[151] Jemielita G.: Rotational representation of a plate made of Grioli–Toupin material. Trans. ASME J. Appl. Mech. 62(2), 414–418 (1995) · Zbl 0833.73020 · doi:10.1115/1.2895946
[152] Jog C.S.: Higher-order shell elements based on a Cosserat model, and their use in the topology design of structures. Comput. Methods Appl. Mech. Eng. 193(23–26), 2191–2220 (2004) · Zbl 1096.74520 · doi:10.1016/j.cma.2004.01.011
[153] Kafadar C.B., Eringen A.C.: Micropolar media–I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971) · Zbl 0218.73004 · doi:10.1016/0020-7225(71)90040-1
[154] Kafadar C.B., Eringen A.C.: Polar field theories. In: Eringen, A.C. (eds) Continuum Physics, vol. IV, pp. 1–75. Academic Press, New York (1976)
[155] Kaplunov J.D., Lippmann H.: Elastic-plastic torsion of a Cosserat-type rod. Acta Mech. 113(1–4), 53–63 (1995) · Zbl 0856.73028 · doi:10.1007/BF01212633
[156] Kayuk Y.F., Zhukovskii A.P.: Theory of plates and shells based on the concept of Cosserat surfaces. Int. Appl. Mech. 17(10), 922–926 (1981) · Zbl 0537.73051
[157] Keller I.E., Trusov P.V.: Fragmentation of metals at high strains: a mechanism of formation of spatially-modulated vortex structures. J. Appl. Mech. Tech. Phys. 43(2), 320–327 (2002) · Zbl 1078.74527 · doi:10.1023/A:1014774230687
[158] Kienzler R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002) · Zbl 1032.74036 · doi:10.1007/s00419-002-0220-2
[159] Kienzler, R., Altenbach, H., Ott, I. (eds.): Critical Review of the Theories of Plates and Shells, New Applications. Lecture Notes in Applied and Computational Mechanics, vol. 16. Springer, Berlin (2004) · Zbl 1045.74003
[160] Kirchhoff G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik 40, 51–88 (1850) · ERAM 040.1086cj · doi:10.1515/crll.1850.40.51
[161] Koiter W.T.: Couple–stresses in the theory of elasticity Pt. I–II. Proc. Koninkl. Neterland Akad. Wetensh B 67, 17–44 (1964) · Zbl 0124.17405
[162] Konopińska V., Pietraszkiewicz W.: Exact resultant equilibrium conditions in the non-linear theory of branched and self-intersecting shells. Int. J. Solids Struct. 44(1), 352–369 (2006) · Zbl 1119.74030 · doi:10.1016/j.ijsolstr.2006.04.030
[163] Korman T., Morghem F.T., Baluch M.H.: Bending of micropolar plates. Nuclear Eng. Des. 26(3), 432–439 (1974) · Zbl 0273.73049 · doi:10.1016/0029-5493(74)90080-6
[164] Kotera H., Sawada M., Shima S.: Magnetic Cosserat continuum theory to simulate behavior of magnetic powder during compaction in applied magnetic field. Metals Mater. Korea 4(3), 354–358 (1998) · Zbl 0966.74023
[165] Kotera H., Sawada M., Shima S.: Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. Int. J. Mech. Sci. 42(1), 129–145 (2000) · Zbl 0966.74023 · doi:10.1016/S0020-7403(98)00108-8
[166] Kratochvil J., Labbe E., Rey C., Yang S.: On physically motivated mesoscale Cosserat model of shear band formation. Scr. Mater. 41(7), 761–766 (1999) · doi:10.1016/S1359-6462(99)00214-6
[167] Kreja, I.: Geometrically non-linear analysis of layered composite plates and shells. Gdansk University of Technology, Gdansk (2007)
[168] Krishnaswamy S., Jin Z.H., Batra R.C.: Stress concentration in an elastic Cosserat plate undergoing extensional deformations. Trans. ASME J. Appl. Mech. 65(1), 66–70 (1998) · doi:10.1115/1.2789047
[169] Kröner, E. (ed.): Mechanics of generalized continua. In: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967, vol. 16. Springer, Berlin (1968) · Zbl 0156.22803
[170] Kumar R., Deswal S.: Some problems of wave propagation in a micropolar elastic medium with voids. J. Vib. Control 12(8), 849–879 (2006) · Zbl 1182.74130 · doi:10.1177/1077546306065856
[171] Kumar R., Partap G.: Rayleigh Lamb waves in micropolar isotropic elastic plate. Appl. Math. Mech. 27(8), 1049–1059 (2006) · Zbl 1163.74473 · doi:10.1007/s10483-006-0805-z
[172] Kumar R., Partap G.: Axisymmetric free vibrations of infinite micropolar thermoelastic plate. Appl. Math. Mech. 28(3), 369–383 (2007) · Zbl 1231.74158 · doi:10.1007/s10483-007-0310-z
[173] Kurlandz Z.T.: Derivation of linear shell theory from theory of Cosserat medium. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 20(10), 789–794 (1972)
[174] Kurlandz Z.T.: Anisotropic linear Cosserat surface and linear shell theory. Arch. Mech. 25(4), 613–620 (1973) · Zbl 0286.73005
[175] Lakes R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986) · doi:10.1016/0020-7683(86)90103-4
[176] Lakes R.S.: Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991) · doi:10.1115/1.2903371
[177] Lakes R.S.: Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Mühlhaus, H. (eds) Continuum Models for Materials with Micro-Structure, pp. 1–22. Wiley, New York (1995) · Zbl 0900.73005
[178] Larsson R., Diebels S.: A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007) · Zbl 1194.74282 · doi:10.1002/nme.1854
[179] Larsson R., Zhang Y.: Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. J. Mech. Phys. Solids 55(4), 819–841 (2007) · Zbl 1162.74427 · doi:10.1016/j.jmps.2006.09.010
[180] Levinson M.: An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Comm. 7(6), 343–350 (1980) · Zbl 0458.73035 · doi:10.1016/0093-6413(80)90049-X
[181] Li L., Xie S.S.: Finite element method for linear micropolar elasticity and numerical study of some scale effects phenomena in MEMS. Int. J. Mech. Sci. 46(11), 1571–1587 (2004) · Zbl 1098.74054 · doi:10.1016/j.ijmecsci.2004.10.004
[182] Libai A., Simmonds J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271–371 (1983) · Zbl 0575.73079 · doi:10.1016/S0065-2156(08)70245-X
[183] Libai A., Simmonds J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998) · Zbl 0918.73003
[184] Lippmann H.: Eine Cosserat-Theorie des plastischen Fließens. Acta Mech. 8(3–4), 93–113 (1969) · Zbl 0188.58703 · doi:10.1007/BF01182264
[185] Lippmann H.: Plasticity in rock mechanics. Int. J. Mech. Sci. 13(4), 291–297 (1971) · doi:10.1016/0020-7403(71)90054-3
[186] Lippmann H.: Plasticity in rock mechanics. Mech. Res. Commun. 11(3), 177–184 (1984) · Zbl 0582.73100 · doi:10.1016/0093-6413(84)90060-0
[187] Lippmann H.: Velocity field equations and strain localization. Int. J. Solids Struct. 22(12), 1399–1409 (1986) · Zbl 0603.73005 · doi:10.1016/0020-7683(86)90050-8
[188] Lippmann H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11), 753–762 (1995) · doi:10.1115/1.3005091
[189] Lubowiecka I., Chróścielewski J.: On dynamics of flexible branched shell structures undergoing large overall motion using finite elements. Comput. Struct. 80, 891–898 (2002) · doi:10.1016/S0045-7949(02)00054-8
[190] Maier T.: Comparison of non-local and polar modelling of softening in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 28(3), 251–268 (2004) · Zbl 1075.74515 · doi:10.1002/nag.334
[191] Makowski, J., Pietraszkiewicz, W.: Thermomechanics of shells with singular curves. Zesz. Nauk. No 528/1487/2002, Gdańsk (2002)
[192] Makowski J., Stumpf H.: Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct. 26, 353–368 (1990) · Zbl 0706.73044 · doi:10.1016/0020-7683(90)90045-W
[193] Makowski J., Pietraszkiewicz W., Stumpf H.: Jump conditions in the nonlinear theory of thin irregular shells. J. Elast. 54, 1–26 (1999) · Zbl 0952.74040 · doi:10.1023/A:1007645414077
[194] Malcolm D.J., Glockner P.G.: Cosserat surface and sandwich shell equilibrium. Trans. ASCE J. Eng. Mech. Div. 98(EM5), 1075–1086 (1972)
[195] Malcolm D.J., Glockner P.G.: Nonlinear sandwich shell and Cosserat surface theory. Trans. ASCE J. Eng. Mech. Div. 98(EM5), 1183–1203 (1972)
[196] Manzari M.T.: Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Methods Geomech. 28(10), 1011–1032 (2004) · Zbl 1075.74581 · doi:10.1002/nag.356
[197] Matsushima T., Saomoto H., Tsubokawa Y., Yamada Y.: Grain rotation versus continuum rotation during shear deformation of granular assembly. Soils Found. 43(4), 95–106 (2003)
[198] Maugin G.A.: Acceleration waves in simple and linear viscoelastic micropolar materials. Int. J. Eng. Sci. 12, 143–157 (1974) · Zbl 0276.73003 · doi:10.1016/0020-7225(74)90013-5
[199] Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Oxford (1988) · Zbl 0652.73002
[200] Maugin G.A.: On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond. A 356, 1367–1395 (1998) · Zbl 0916.73005 · doi:10.1098/rsta.1998.0226
[201] Migoun, N.P., Prokhorenko, P.P.: Hydrodynamics and Heattransfer in Gradient Flows of Microstructured Fluids (in Russian). Nauka i Technika, Minsk (1984)
[202] Mindlin R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Trans. ASME J. Appl. Mech. 18, 31–38 (1951) · Zbl 0044.40101
[203] Mindlin R.D., Tiersten H.F.: Effects of couple–stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[204] Mora R., Waas A.M.: Measurement of the Cosserat constant of circular-cell polycarbonate honeycomb. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 80(7), 1699–1713 (2000)
[205] Mori K., Shiomi M., Osakada K.: Inclusion of microscopic rotation of powder particles during compaction in finite element method using Cosserat continuum theory. Int. J. Numer. Methods Eng. 42(5), 847–856 (1998) · Zbl 0916.73061 · doi:10.1002/(SICI)1097-0207(19980715)42:5<847::AID-NME388>3.0.CO;2-E
[206] Murdoch A.I., Cohen H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72(1), 61–98 (1979) · Zbl 0424.73063 · doi:10.1007/BF00250737
[207] Murdoch A.I., Cohen H.: Symmetry considerations for material surfaces. Addendum. Arch. Ration. Mech. Anal. 76(4), 393–400 (1979) · Zbl 0468.73003
[208] Naghdi P.: The theory of plates and shells. In: Flügge, S. (eds) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)
[209] Naghdi P.: On the formulation of contact problems of shells and plates. J. Elast. 5(3–4), 379–398 (1975) · Zbl 0334.73028 · doi:10.1007/BF00126998
[210] Naghdi P., Rubin M.B.: Restrictions on nonlinear constitutive equations for elastic shells. J. Elast. 39, 133–163 (1995) · Zbl 0840.73040 · doi:10.1007/BF00043413
[211] Naghdi P., Trapp J.A.: A uniqueness theorem in the theory of Cosserat surface. J. Elast. 2(1), 9–20 (1972) · doi:10.1007/BF00045690
[212] Naghdi P.M., Srinivasa A.R.: A dynamical theory of structured solids. 1. Basic developments. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 345(1677), 425–458 (1993) · Zbl 0807.73001 · doi:10.1098/rsta.1993.0140
[213] Nardinocchi R., Podio-Guidugli P.: The equations of Reissner–Mindlin plates obtained by the method of internal constraints. Meccanica 29, 143–157 (1994) · Zbl 0808.73040 · doi:10.1007/BF01007498
[214] Naue G.: Kontinuumsbegriff und Erhaltungssätze in der Mechanik seit Leonard Euler. Tech. Mech. 5(4), 62–66 (1984)
[215] Nazarov S.A.: Asymptotic behavior of the solution of an elliptic boundary value problem in a thin domain. J. Math. Sci. 64(6), 1351–1362 (1993) · Zbl 0789.47031 · doi:10.1007/BF01098027
[216] Neff P.: A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16(6), 577–628 (2004) · Zbl 1158.74419 · doi:10.1007/s00161-004-0182-4
[217] Neff P.: The {\(\Gamma\)}-limit of a finite strain Cosserat model for asymptotically thin domains and a consequence for the Cosserat couple modulus. Proc. Appl. Math. Mech. 5(1), 629–630 (2005) · Zbl 1391.74131 · doi:10.1002/pamm.200510291
[218] Neff P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006) · Zbl 1213.74032 · doi:10.1016/j.ijengsci.2006.04.002
[219] Neff P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. ZAMM 86(11), 892–912 (2006) · Zbl 1104.74007 · doi:10.1002/zamm.200510281
[220] Neff P.: A geometrically exact planar Cosserat shell-model with microstructure: existence of minimizers for zero Cosserat couple modulus. Math. Models Methods Appl. Sci. 17(3), 363–392 (2007) · Zbl 1119.74029 · doi:10.1142/S0218202507001954
[221] Neff P., Chełmiński K.: Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate independent case. Proc. R. Soc. Edinb. A Math. 135, 1017–1039 (2005) · Zbl 1084.74004 · doi:10.1017/S030821050000425X
[222] Neff P., Chełmiński K.: A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via {\(\Gamma\)}-convergence. Interfaces Free Boundaries 9, 455–492 (2007) · Zbl 1137.74014 · doi:10.4171/IFB/173
[223] Neff P., Chełmiński K.: Well-posedness of dynamic Cosserat plasticity. Appl. Math. Optim. 56(1), 19–35 (2007) · Zbl 1120.74006 · doi:10.1007/s00245-007-0878-5
[224] Neff P., Jeong J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. ZAMM 89(2), 107–122 (2009) · Zbl 1157.74002 · doi:10.1002/zamm.200800156
[225] Neff P., Knees D.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40(1), 21–43 (2008) · Zbl 1193.35224 · doi:10.1137/070695824
[226] Neff P., Chełmiński K., Mueller W., Wieners C.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17(8), 1211–1239 (2007) · Zbl 1137.74012 · doi:10.1142/S021820250700225X
[227] Nicotra V., Podio-Guidugli P., Tiero A.: Exact equilibrium solutions for linearly elastic plate-like bodies. J. Elast. 56, 231–245 (1999) · Zbl 0972.74043 · doi:10.1023/A:1007663417576
[228] Nikitin E., Zubov L.M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51, 1–22 (1998) · Zbl 0929.74014 · doi:10.1023/A:1007569315660
[229] Nistor I.: Variational principles for Cosserat bodies. Int. J. Non-Linear Mech. 37, 565–569 (2002) · Zbl 1346.74011 · doi:10.1016/S0020-7462(00)00113-X
[230] Noor A.K.: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 43, 223–234 (1990)
[231] Noor A.K.: List of books, monographs, and survey papers on shells. In: Noor, A.K., Belytschko, T., Simo, J.C. (eds) Analytical and Computational Models of Shells, CED, vol. 3, pp. vii–xxxiv. ASME, New York (2004)
[232] Nowacki W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986) · Zbl 0604.73020
[233] Nowacki W., Nowacki W.K.: Propagation of monochromatic waves in an infinite micropolar elastic plate. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 17(1), 45–53 (1969) · Zbl 0169.27902
[234] Pal’mov V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Mech. Math. 28(3), 496–505 (1964) · doi:10.1016/0021-8928(64)90092-9
[235] Pal’mov V.A.: The plane problem in the theory of nonsymmetrical elasticity. J. Appl. Mech. Math. 28(6), 1341–1345 (1964) · Zbl 0151.36403 · doi:10.1016/0021-8928(64)90046-2
[236] Pal’mov V.A.: Contribution to Cosserat’s theory of plates (in Russian). Trudy LPI 386, 3–8 (1982)
[237] Palmow W.A., Altenbach H.: Über eine Cosseratsche Theorie für elastische Platten. Technische Mechanik 3(3), 5–9 (1982)
[238] Papanastasiou P.: Localization of deformation and failure around elliptical perforations based on a polar continuum. Comput. Mech. 26(4), 352–361 (2000) · Zbl 0993.74058 · doi:10.1007/s004660000183
[239] Park H.C., Lakes R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 385–397 (1986) · doi:10.1016/0021-9290(86)90015-1
[240] Pietraszkiewicz W.: Consistent second approximation to the elastic strain energy of a shell. ZAMM 59, 206–208 (1979) · Zbl 0416.73064
[241] Pietraszkiewicz, W.: Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Polish Scientific Publishers, Warszawa-Poznań (1979) · Zbl 0452.73078
[242] Pietraszkiewicz W.: Addendum to: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 45, 249–250 (1992) · doi:10.1115/1.3121399
[243] Pietraszkiewicz W.: Teorie nieliniowe powłok. In: Woźniak, C. (eds) Mechanika spre\.zystych płyt i powłok, pp. 424–497. PWN, Warszawa (2001)
[244] Pietraszkiewicz W., Badur J.: Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097–1115 (1983) · Zbl 0521.73033 · doi:10.1016/0020-7225(83)90050-2
[245] Pietraszkiewicz W., Eremeyev V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009) · Zbl 1215.74004 · doi:10.1016/j.ijsolstr.2008.09.027
[246] Pietraszkiewicz W., Eremeyev V.A.: On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009) · Zbl 1217.74012 · doi:10.1016/j.ijsolstr.2009.01.030
[247] Pietraszkiewicz W., Chróścielewski J., Makowski J.: On dynamically and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 163–167. Taylor & Francis, London (2005)
[248] Pietraszkiewicz W., Eremeyev V.A., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2), 150–159 (2007) · Zbl 1146.74032 · doi:10.1002/zamm.200610309
[249] Podio-Guidugli P.: An exact derivation of the thin plate equation. J. Elast. 22, 121–133 (1989) · Zbl 0692.73049 · doi:10.1007/BF00041107
[250] Pompei A., Rigano M.A.: On the bending of micropolar viscoelastic plates. Int. J. Eng. Sci. 44(18–19), 1324–1333 (2006) · Zbl 1213.74205 · doi:10.1016/j.ijengsci.2006.05.016
[251] Provan J.W., Koeller R.C.: On the theory of elastic plates. Int. J. Solids Struct. 6(7), 933–950 (1970) · Zbl 0214.24802 · doi:10.1016/0020-7683(70)90005-3
[252] Ramezani S., Naghdabadi R.: Energy pairs in the micropolar continuum. Int. J. Solids Struct. 44, 4810–4818 (2007) · Zbl 1166.74314 · doi:10.1016/j.ijsolstr.2006.12.006
[253] Ramsey H.: Comparison of buckling deformations in compressed elastic Cosserat plates with three-dimensional plates. Int. J. Solids Struct. 22(3), 257–266 (1986) · Zbl 0581.73055 · doi:10.1016/0020-7683(86)90090-9
[254] Ramsey H.: Axisymmetrical buckling of a cylindrical elastic Cosserat shell under axial-compression. Q. J. Mech. Appl. Math. 40(3), 415–429 (1987) · Zbl 0618.73055 · doi:10.1093/qjmam/40.3.415
[255] Reddy J.N.: A simple higher-order theory for laminated composite plates. Trans. ASME J. Appl. Mech. 51, 745–752 (1984) · Zbl 0549.73062 · doi:10.1115/1.3167719
[256] Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–194 (1944) · Zbl 0061.42501
[257] Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12(11), A69–A77 (1945) · Zbl 0063.06470
[258] Reissner E.: On bending of elastic plates. Q. Appl. Math. 5, 55–68 (1947) · Zbl 0030.04302
[259] Reissner E.: A note on pure bending and flexure in plane stress including the effect of moment stresses. Arch. Mech. 28(6), 633–642 (1970) · Zbl 0206.54701
[260] Reissner E.: On sandwich-type plates with cores capable of supporting moment stresses. Acta Mech. 14(1), 43–51 (1972) · Zbl 0243.73030 · doi:10.1007/BF01176736
[261] Reissner E.: On kinematics and statics of finite-strain force and moment stress elasticity. Stud. Appl. Math. 52, 93–101 (1973) · Zbl 0269.73040
[262] Reissner E.: Note on the equations of finite-strain force and moment stress elasticity. Stud. Appl. Math. 54, 1–8 (1975) · Zbl 0326.73006
[263] Reissner E.: A note on generating generalized two-dimensional plate and shell theories. ZAMP 28, 633–642 (1977) · Zbl 0376.73085 · doi:10.1007/BF01601342
[264] Reissner E.: Reflection on the theory of elastic plates. Appl. Mech. Rev. 38(11), 1453–1464 (1985) · Zbl 0585.93019 · doi:10.1115/1.3143699
[265] Reissner E.: A further note on the equations of finite-strain force and moment stress elasticity. ZAMP 38, 665–673 (1987) · Zbl 0626.73027 · doi:10.1007/BF00948288
[266] Ristinmaa M., Vecchi M.: Use of couple–stress theory in elasto-plasticity. Comput. Methods Appl. Mech. Eng. 136(3–4), 205–224 (1996) · Zbl 0921.73116 · doi:10.1016/0045-7825(96)00996-6
[267] Rothert H.: Lineare konstitutive Gleiehungen der viskoelastischen Cosseratfläche. ZAMM 55, 647–656 (1975) · Zbl 0336.73001 · doi:10.1002/zamm.19750551104
[268] Rothert H.: Lösungsmöglichkeiten des Umkehrproblems viskoelastischer Cosseratfächen. ZAMM 57, 429–437 (1977) · Zbl 0373.73005 · doi:10.1002/zamm.19770570802
[269] Rubin M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000) · Zbl 0984.74003
[270] Rubin M.B.: Restrictions on linear constitutive equations for a rigid heat conducting Cosserat shell. Int. J. Solids Struct. 41(24–25), 7009–7033 (2004) · Zbl 1179.74076 · doi:10.1016/j.ijsolstr.2004.05.031
[271] Rubin M.B.: Numerical solution of axisymmetric nonlinear elastic problems including shells using the theory of a Cosserat point. Comput. Mech. 36(4), 266–288 (2005) · Zbl 1100.74057 · doi:10.1007/s00466-005-0665-6
[272] Rubin M.B., Benveniste Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52(5), 1023–1052 (2004) · Zbl 1112.74422 · doi:10.1016/j.jmps.2003.09.030
[273] Sansour C.: A theory of the elasto-viscoplastic Cosserat continuum. Arch. Mech. 50, 577–597 (1998) · Zbl 0955.74009
[274] Sansour C., Bednarczyk H.: The Cosserat surface as a shell-model, theory and finite-element formulation. Comput. Methods Appl. Mech. Eng. 120(1–2), 1–32 (1995) · Zbl 0851.73038 · doi:10.1016/0045-7825(94)00054-Q
[275] Sargsyan S.O.: On some interior and boundary effects in thin plates based on the asymmetric theory of elasticity. In: Kienzler, R., Altenbach, H., Ott, I. (eds) Theories of Plates and Shells: Critical Review and New Applications, pp. 201–210. Springer, Berlin (2005) · Zbl 1330.74109
[276] Sargsyan S.O.: Boundary-value problems of the asymmetric theory of elasticity for thin plates. J. Appl. Math. Mech. 72(1), 77–86 (2008) · doi:10.1016/j.jappmathmech.2008.03.018
[277] Sawczuk A.: On the yielding of Cosserat continua. Arch. Mech. 19, 471–480 (1967) · Zbl 0158.21404
[278] Schaefer H.: Das Cosserat-Kontinuum. ZAMM 47(8), 485–498 (1967) · Zbl 0189.27102 · doi:10.1002/zamm.19670470802
[279] Schiavone P.: On existence theorems in the theory of extensional motions of thin micropolar plates. Int. J. Eng. Sci. 27(9), 1129–1133 (1989) · Zbl 0705.73100 · doi:10.1016/0020-7225(89)90091-8
[280] Schiavone P.: Uniqueness in dynamic problems of thin micropolar plates. Appl. Math. Lett. 4(2), 81–83 (1991) · Zbl 0734.35050 · doi:10.1016/0893-9659(91)90174-T
[281] Schiavone P., Constanda C.: Existence theorems in the theory of bending of micropolar plates. Int. J. Eng. Sci. 27(4), 463–468 (1989) · Zbl 0704.73053 · doi:10.1016/0020-7225(89)90136-5
[282] Sedláček R., Forest S.: Non-local plasticity at microscale: a dislocation-based and a Cosserat model. Phys. Status Solidi B Basic Res. 221(2), 583–596 (2000) · doi:10.1002/1521-3951(200010)221:2<583::AID-PSSB583>3.0.CO;2-F
[283] Sekine K.: Cosserat theory of crystal plasticity with application to analysis of lattice rotations under constrained deformation. J. Japan Inst. Metals 41(9), 874–882 (1977)
[284] Sharbati E., Naghdabadi R.: Computational aspects of the Cosserat finite element analysis of localization phenomena. Comput. Mater. Sci. 38(2), 303–315 (2006) · doi:10.1016/j.commatsci.2006.03.003
[285] Shkutin L.I.: Nonlinear models of deformable momental continua (in Russian). J. Appl. Mech. Tech. Phys. 6, 111–117 (1980)
[286] Shkutin L.I.: Mechanics of Deformations of Flexible Bodies (in Russian). Nauka, Novosibirsk (1985) · Zbl 0705.73059
[287] Sievert R., Forest S., Trostel R.: Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity. J. Phys. IV 8(P8), 357–364 (1998) · doi:10.1051/jp4:1998844
[288] Simmonds J.G.: The thermodynamical theory of shells: descent from 3-dimensions without thickness expansions. In: Axelrad, E.K., Emmerling, F.A. (eds) Flexible Shells, Theory and Applications, pp. 1–11. Springer, Berlin (1984) · Zbl 0558.73004
[289] Simmonds, J.G.: Some comments on the status of shell theory at the end of the 20th century: complaints and correctives. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 38th, and AIAA/ASME/AHS Adaptive Structures Forum, Kissimmee, FL, April 7–10, 1997. Collection of Technical Papers, Pt. 3 (A97-24112 05-39), AIAA, pp. 1912–1921 (1997)
[290] Simmonds J.G., Danielson D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. Trans. ASME J. Appl. Mech. 39(4), 1085–1090 (1972) · Zbl 0248.73043 · doi:10.1115/1.3422833
[291] van der Sluis O., Vosbeek P.H.J., Schreurs P.J.G., Meijer H.E.H.: Homogenization of heterogeneous polymers. Int. J. Solids Struct. 36(21), 3193–3214 (1999) · Zbl 0976.74055 · doi:10.1016/S0020-7683(98)00144-9
[292] Steinmann P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994) · Zbl 0945.74523 · doi:10.1016/0020-7683(94)90164-3
[293] Steinmann P.: Theorie endlicher mikropolarer Elasto-Plasticität. ZAMM 74(4), T245–T247 (1994)
[294] Steinmann P., Stein E.: A uniform treatment of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997) · Zbl 0878.73004 · doi:10.1007/BF01262533
[295] Stojanović, R. (eds): Mechanics of Polar Continua, Theory and Applications. Springer, Wien (1969)
[296] Stojanović R.: Nonlinear micropolar elasticity. In: Nowacki, W., Olszak, W. (eds) Micropolar Elasticity, pp. 73–103. Springer, Wien (1972)
[297] Suiker A.S.J., DeBorst R., Chang C.S.: Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mech. 149, 161–180 (2001) · Zbl 1135.74307 · doi:10.1007/BF01261670
[298] Swift H.W.: Length changes in metals under torsional overstrain. Engineering 163, 253–257 (1947)
[299] Tejchman J., Bauer E.: Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granul. Matter 7, 227–242 (2005) · Zbl 1115.74014 · doi:10.1007/s10035-005-0212-3
[300] Tejchman J., Wu W.: Numerical study on sand and steel interfaces. Mech. Res. Commun. 21(2), 109–119 (1994) · Zbl 0925.73185 · doi:10.1016/0093-6413(94)90082-5
[301] Tejchman J., Wu W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Methods Geomech. 19(8), 513–536 (1995) · doi:10.1002/nag.1610190803
[302] Timoshenko S.P., Woinowsky-Krieger S.: Theory of Plates and Shells. McGraw Hill, New York (1985) · Zbl 0114.40801
[303] Tomar S.K.: Wave propagation in a micropolar elastic plate with voids. J. Vib. Control 11(6), 849–863 (2005) · Zbl 1182.74135 · doi:10.1177/1077546305054788
[304] Toupin R.A.: Elastic materials with couple–stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[305] Toupin R.A.: Theories of elasticity with couple–stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
[306] Trovalusci P., Masiani R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40(5), 1281–1297 (2003) · Zbl 1062.74514 · doi:10.1016/S0020-7683(02)00584-X
[307] Truesdell C.: Die Entwicklung des Drallsatzes. ZAMM 44(4/5), 149–158 (1964) · Zbl 0117.24604 · doi:10.1002/zamm.19640440402
[308] Truesdell C., Noll W.: The nonlinear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, vol. III/3, pp. 1–602. Springer, Berlin (1965) · Zbl 1068.74002
[309] Truesdell C., Toupin R.: The classical field theories. In: Flügge, S. (eds) Handbuch der Physik, vol. III/1, pp. 226–793. Springer, Berlin (1960)
[310] Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. Key Eng. Mater. 180, 13–22 (2000) · doi:10.4028/www.scientific.net/KEM.177-180.13
[311] Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. Int. J. Mech. Sci. 43(9), 1969–1983 (2001) · Zbl 0978.74503 · doi:10.1016/S0020-7403(01)00023-6
[312] Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. J. Mech. Phys. Solids 49(1), 2577–2591 (2001) · Zbl 1047.74508 · doi:10.1016/S0022-5096(01)00069-2
[313] Turner J.R., Nicol D.A.C.: The Signorini problem for a Cosserat plate. J. Inst. Math. Appl. 25(2), 133–145 (1980) · Zbl 0448.73058 · doi:10.1093/imamat/25.2.133
[314] Walsh S.D.C., Tordesillas A.: A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167, 145–169 (2004) · Zbl 1064.74048 · doi:10.1007/s00707-003-0072-z
[315] Wang C.M., Reddy J.N., Lee K.H.: Shear Deformable Beams and Shells. Elsevier, Amsterdam (2000) · Zbl 0963.74002
[316] Wang F.Y.: On the solutions of Eringen’s micropolar plate equations and of other approximate equations. Int. J. Eng. Sci. 28(9), 919–925 (1990) · Zbl 0719.73024 · doi:10.1016/0020-7225(90)90041-G
[317] Wang F.Y., Zhou Y.: On the vibration modes of three-dimensional micropolar elastic plates. J. Sound Vib. 146(1), 1–16 (1991) · doi:10.1016/0022-460X(91)90519-P
[318] Wierzbicki E., Wozniak C.: On the dynamics of combined plane periodic structures. Arch. Appl. Mech. 70(6), 387–398 (2000) · Zbl 0988.74030 · doi:10.1007/s004199900070
[319] Wilson E.B.: Vector Analysis, Founded upon the Lectures of J. W. Gibbs. Yale University Press, New Haven (1901)
[320] Woźniak C. (eds): Mechanika spre\.zystych płyt i powłok. PWN, Warszawa (2001)
[321] Xiao H.: On symmetries and anisotropies of classical and micropolar linear elasticities: a new method based upon a complex vector basis and some systematic results. J. Elast. 49, 129–162 (1998) · Zbl 0916.73004 · doi:10.1023/A:1007448316434
[322] Yang H.T.Y., Saigal S., Masud A., Kapania R.K.: A survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47(1–3), 101–127 (2000) · Zbl 0987.74001 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
[323] Yeremeyev V.A., Zubov L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755–767 (1999) · doi:10.1016/S0021-8928(99)00096-9
[324] Zervos A., Vardoulakis I., Jean M., Lerat P.: Numerical investigation of granular interfaces kinematics. Mech. Cohesive-frictional Mater. 5(4), 305–324 (2000) · doi:10.1002/(SICI)1099-1484(200005)5:4<305::AID-CFM96>3.0.CO;2-W
[325] Zhang H.W., Wang H., Wriggers P., Schrefler B.A.: A finite element model for contact analysis of multiple Cosserat bodies. Comput. Mech. 36(6), 444–458 (2005) · Zbl 1100.74059 · doi:10.1007/s00466-005-0680-7
[326] Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976) · doi:10.1016/0020-7683(76)90010-X
[327] Zhilin, P.A.: Applied Mechanics. Foundations of the Theory of Shells (in Russian). St. Petersburg State Polytechnical University, Saint Petersburg (2006)
[328] Zubov L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997) · Zbl 0899.73001
[329] Zubov L.M.: Nonlinear theory of isolated and continuosly distributed dislocations in elastic shells. Arch. Civil Eng. XLV(2), 385–396 (1999)
[330] Zubov L.M.: Semi-inverse solutions in nonlinear theory of elastic shells. Arch. Mech. 53(4–5), 599–610 (2001) · Zbl 1018.74024
[331] Zubov L.M.: Continuously distributed dislocations and disclinations in nonlinearly elastic micropolar media. Doklady Phys. 49(5), 308–310 (2004) · doi:10.1134/1.1763622
[332] Zubov L.M., Eremeev V.A.: Equations for a viscoelastic micropolar fluid. Doklady Phys. 41(12), 598–601 (1996) · Zbl 0929.76006
[333] Zubov L.M., Karyakin M.I.: Dislocations and disclinations in nonlinear elastic bodies with moment stresses. J. Appl. Mech. Tech. Phys. 31(3), 493–500 (1990) · doi:10.1007/BF00864588
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.