×

Streamlines concentration and application to the incompressible Navier-Stokes equations. (English) Zbl 1273.35208

Summary: For a smooth domain containing the origin, we consider a divergence-free vector field and exclude certain types of possible isolated singularities at the origin, based on the geometry of streamlines that go near that possible singular point.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66. · Zbl 0573.76029 · doi:10.1007/BF01212349
[2] H. Beirao da Veiga, A new regularity class for the Navier-Stokes equations in \(\boldsymbol{R}^n\), A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), no. 6, 797, Chinese Ann. Math. Ser. B 16 (1995), no.4, 407-412. · Zbl 0837.35111
[3] A. Biryuk, W. Craig and S. Ibrahim, Construction of suitable weak solutions of the Navier-Stokes equations, Stochastic analysis and partial differential equations, 1-18, Contemp. Math. 429, Amer. Math. Soc., Providence, RI, 2007. · Zbl 1205.35187 · doi:10.1090/conm/429/08226
[4] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[5] C. H. Chan, Smoothness criteria for Navier-Stokes equations in terms of regularity along the stream lines, Methods Appl. Anal. 17 (2010), 81-103. · Zbl 1206.35192 · doi:10.4310/MAA.2010.v17.n1.a3
[6] C. H. Chan and T. Yoneda, On possible isolated blow-up phenomena and regularity criterion of the 3D Navier-Stokes equation along the streamlines, submitted. · Zbl 1300.35067
[7] C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II, Comm. Partial Differential Equations 34 (2009), 203-232. · Zbl 1173.35095 · doi:10.1080/03605300902793956
[8] A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics, Third edition, Text Appl. Math 4, Springer-Verlag, New York, 1993. · Zbl 0774.76001
[9] L. Escauriaza, G. Seregin and V. Sverak, \(L_{3, \infty}\)-solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys 58 (2003), 211-250. · Zbl 1064.35134 · doi:10.1070/RM2003v058n02ABEH000609
[10] C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), 339-368. · Zbl 0454.35073
[11] E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231. · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[12] G. Koch, N. Nadirashvili, G. A. Seregin and A. V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math. 203 (2009), 83-105. · Zbl 1208.35104 · doi:10.1007/s11511-009-0039-6
[13] O. A. Ladyžhenskaya, Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 5 (1967), 169-185. · Zbl 0194.12805
[14] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta. Math. 63 (1934), 183-248. · JFM 60.0726.05
[15] G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4) 48 (1959), 173-182. · Zbl 0148.08202 · doi:10.1007/BF02410664
[16] V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), 97-112. · Zbl 0357.35071 · doi:10.1007/BF01626512
[17] J. Serrin, The initial value problem for the Navier-Stokes equations, In Nonlinear (Proc. Sympos., Madison, Wis. pages 69-98), Univ. of Wiscons · Zbl 0115.08502
[18] M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 437-458. · Zbl 0632.76034 · doi:10.1002/cpa.3160410404
[19] A. Vasseur, Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity, Appl. Math. 54 (2009), 47-52. · Zbl 1212.35354 · doi:10.1007/s10492-009-0003-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.