×

Numerical multilevel upscaling for incompressible flow in reservoir simulation: an element-based algebraic multigrid (amge) approach. (English) Zbl 1360.65247

Summary: We study the application of a finite element numerical upscaling technique to the incompressible two-phase porous media total velocity formulation. Specifically, an element-agglomeration-based algebraic multigrid (AMGe) technique with improved approximation properties [I. V. Lashuk and P. S. Vassilevski, Numer. Linear Algebra Appl. 19, No. 2, 414–426 (2012; Zbl 1274.65302)] is used, for the first time, to generate upscaled and accurate coarse systems for the reservoir simulation equations. The upscaling technique is applied to both the mixed system for velocity and pressure and to the hyperbolic transport equations, providing fully upscaled systems. By introducing additional degrees of freedom associated with nonplanar interfaces between agglomerates, the coarse velocity space has guaranteed approximation properties. The employed AMGe technique provides coarse spaces with desirable local mass conservation and stability properties analogous to the original pair of Raviart-Thomas and piecewise discontinuous polynomial spaces, resulting in strong mass conservation for the upscaled systems. Due to the guaranteed approximation properties and the generic nature of the AMGe method, recursive multilevel upscaling is automatically obtained. Furthermore, this technique works for both structured and unstructured meshes. Multiscale mixed finite elements exhibit accuracy for general unstructured meshes but do not in general lead to nested hierarchy of spaces. Multiscale multilevel mimetic finite differences generate nested spaces but lack the adaptivity of the flux representation on coarser levels that the proposed AMGe approach offers. Thus, the proposed approach can be seen as a rigorous bridge that merges the best properties of these two existing methods. The accuracy and stability of the studied multilevel AMGe upscaling technique is demonstrated on two challenging test cases.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Citations:

Zbl 1274.65302

Software:

MFEM; hypre
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J. E. Aarnes, {\it On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation}, Multiscale Model. Simul., 2 (2004), pp. 421-439, . · Zbl 1181.76125
[2] J. E. Aarnes, S. Krogstad, and K.-A. Lie, {\it A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids}, Multiscale Model. Simul., 5 (2006), pp. 337-363, . · Zbl 1124.76022
[3] J. E. Aarnes, V. Kippe, and K.-A. Lie, {\it Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels}, Adv. in Water Res., 28 (2005), pp. 257-271.
[4] J. E. Aarnes, S. Krogstad, and K.-A. Lie, {\it Multiscale mixed/mimetic methods on corner-point grids}, Comput. Geosci., 12 (2008), pp. 297-315. · Zbl 1259.76065
[5] T. Arbogast, {\it An overview of subgrid upscaling for elliptic problems in mixed form}, in Current Trends in Scientific Computing, Contemp. Math. 329, AMS, Providence, RI, 2003, pp. 21-32. · Zbl 1040.65093
[6] T. Arbogast, {\it Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems}, SIAM J. Numer. Anal., 42 (2004), pp. 576-598, . · Zbl 1078.65092
[7] T. Arbogast and K. J. Boyd, {\it Subgrid upscaling and mixed multiscale finite elements}, SIAM J. Numer. Anal., 44 (2006), pp. 1150-1171, . · Zbl 1120.65122
[8] T. Arbogast, M. Juntunen, J. Pool, and M. F. Wheeler, {\it A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure}, Comput. Geosci., 17 (2013), pp. 1055-1078, . · Zbl 1393.76059
[9] K. Aziz, L. Durlofsky, and H. Tchelepi, {\it Notes on Petroleum Reservoir Simulation}, Department of Petroleum Engineering, School of Earth Sciences, Stanford University, Stanford, CA, 2005.
[10] M. Benzi, G. H. Golub, and J. Liesen, {\it Numerical solution of saddle point problems}, Acta Numer., 14 (2005), pp. 1-137. · Zbl 1115.65034
[11] A. Borz\`\i and V. Schulz, {\it Multigrid methods for PDE optimization}, SIAM Rev., 51 (2009), pp. 361-395, . · Zbl 1167.35354
[12] X. C. Cai, L. Marcinkowski, and P. S. Vassilevski, {\it An element agglomeration nonlinear additive Schwarz preconditioned Newton method for unstructured finite element problems}, Appl. Math., 50 (2005), pp. 247-275. · Zbl 1099.65031
[13] T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, and P. S. Vassilevski, {\it Spectral AMGe \((ρ\) AMGe)}, SIAM J. Sci. Comput., 25 (2003), pp. 1-26, . · Zbl 1057.65096
[14] T. Chartier, R. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, and P. S. Vassilevski, {\it Spectral element agglomerate AMGe}, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 513-521. · Zbl 1057.65096
[15] Z. Chen and T. Y. Hou, {\it A mixed multiscale finite element method for elliptic problems with oscillating coefficients}, Math. Comp., 72 (2003), pp. 541-576, . · Zbl 1017.65088
[16] Z. Chen, G. Huan, and B. Li, {\it An improved IMPES method for two-phase flow in porous media}, Transp. Porous Media, 54 (2004), pp. 361-376, .
[17] Z. Chen, G. Huan, and Y. Ma, {\it Computational Methods for Multiphase Flows in Porous Media}, SIAM, Philadelphia, 2006, . · Zbl 1092.76001
[18] M. Christensen, U. Villa, and P. Vassilevski, {\it Multilevel techniques lead to accurate numerical upscaling and scalable robust solvers for reservoir simulation}, in SPE Reservoir Simulation Symposium, Houston, TX, 2015, pp. 1156-1167.
[19] M. Christensen, U. Villa, and P. Vassilevski, {\it Nonlinear Multigrid Solvers Exploiting AMGe Coarse Spaces with Approximation Properties}, Tech. Report LLNL-JRNL-697795, Lawrence Livermore National Laboratory, Livermore, CA, 2016. · Zbl 1432.76160
[20] K. Cliffe, M. Giles, R. Scheichl, and A. L. Teckentrup, {\it Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients}, Comput. Vis. Sci., 14 (2011), pp. 3-15. · Zbl 1241.65012
[21] T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup, {\it A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow}, SIAM/ASA J. Uncertainty Quantification, 3 (2015), pp. 1075-1108, . · Zbl 1330.65007
[22] L. J. Durlofsky and K. Aziz, {\it Advanced Techniques for Reservoir Simulation and Modeling of Nonconventional Wells}, Tech. Report, 2004, .
[23] L. J. Durlofsky, Y. Efendiev, and V. Ginting, {\it An adaptive local-global multiscale finite volume element method for two-phase flow simulations.}, Adv. in Water Res., 30 (2007), pp. 576-588.
[24] Y. Efendiev and L. J. Durlofsky, {\it A generalized convection-diffusion model for subgrid transport in porous media}, Multiscale Model. Simul., 1 (2003), pp. 504-526, . · Zbl 1191.76098
[25] R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, {\it On two-grid convergence estimates}, Numer. Linear Algebra Appl., 12 (2005), pp. 471-494. · Zbl 1164.65343
[26] G. Golub and C. Van Loan, {\it Matrix Computations}, The Johns Hopkins University Press, Baltimore, MD, 2012, . · Zbl 1268.65037
[27] T. Y. Hou and X.-H. Wu, {\it A multiscale finite element method for elliptic problems in composite materials and porous media}, J. Comput. Phys., 134 (1997), pp. 169-189. · Zbl 0880.73065
[28] R. Falgout et al., {\it HYPRE: Scalable Linear Solvers and Multigrid Methods}, Lawrence Livermore National Laboratory, Livermore, CA, 2016, .
[29] P. Jenny, S. Lee, and H. Tchelepi, {\it Multi-scale finite-volume method for elliptic problems in subsurface flow simulation}, J. Comput. Phys., 187 (2003), pp. 47-67. · Zbl 1047.76538
[30] J. E. Jones and P. S. Vassilevski, {\it AMGe based on element agglomeration}, SIAM J. Sci. Comput., 23 (2001), pp. 109-133, . · Zbl 0992.65140
[31] D. Kalchev, C. Ketelsen, and P. S. Vassilevski, {\it Two-level adaptive algebraic multigrid for a sequence of problems with slowly varying random coefficients}, SIAM J. Sci. Comput., 35 (2013), pp. B1215-B1234, . · Zbl 1285.65083
[32] G. Karypis and V. Kumar, {\it A fast and high quality multilevel scheme for partitioning irregular graphs}, SIAM J. Sci. Comput., 20 (1998), pp. 359-392, . · Zbl 0915.68129
[33] S. Knapek, {\it Matrix-dependent multigrid homogenization for diffusion problems}, SIAM J. Sci. Comput., 20 (1998), pp. 515-533, . · Zbl 0926.35017
[34] S. Krogstad, K. Lie, and B. Skaflestad, {\it Mixed multiscale methods for compressible flow}, in Proceedings of the 13th European Conference on the Mathematics of Oil Recovery (ECMOR XIII), Biarritz, France, 2012.
[35] M. S. Lamine, S. Krogstad, K.-A. Lie, M. Pal, et al., {\it Multiscale method for simulating two-and three-phase flow in porous media}, in Proceedings of the SPE Reservoir Simulation Symposium, Woodlands, TX, 2013.
[36] I. Lashuk and P. Vassilevski, {\it Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties}, Numer. Linear Algebra Appl., 19 (2012), pp. 414-426. · Zbl 1274.65302
[37] I. Lashuk and P. S. Vassilevski, {\it On some versions of the element agglomeration AMGe method}, Numer. Linear Algebra Appl., 15 (2008), pp. 595-620. · Zbl 1212.65494
[38] I. Lashuk and P. S. Vassilevski, {\it The construction of the coarse de Rham complexes with improved approximation properties}, Comput. Methods Appl. Math., 14 (2014), pp. 257-303. · Zbl 1284.65156
[39] K. Lipnikov, J. D. Moulton, and D. Svyatskiy, {\it A multilevel multiscale mimetic \((M^3)\) method for two-phase flows in porous media}, J. Comput. Phys., 227 (2008), pp. 6727-6753. · Zbl 1338.76096
[40] K. Lipnikov, J. D. Moulton, and D. Svyatskiy, {\it A multiscale multilevel mimetic \((M^3)\) method for well-driven flows in porous media}, Procedia Comput. Sci., 1 (2010), pp. 771-779, . · Zbl 1338.76096
[41] K. Lipnikov, J. D. Moulton, and D. Svyatskiy, {\it Adaptive strategies in the multilevel multiscale mimetic \((M^3)\) method for two-phase flows in porous media}, Multiscale Model. Simul., 9 (2011), pp. 991-1016, . · Zbl 1247.76055
[42] S. P. MacLachlan and J. D. Moulton, {\it Multilevel upscaling through variational coarsening}, Water Resour. Res., 42 (2006), W02418, .
[43] K.-A. Mardal and R. Winther, {\it Preconditioning discretizations of systems of partial differential equations}, Numer. Linear Algebra Appl., 18 (2011), pp. 1-40, . · Zbl 1249.65246
[44] MFEM, {\it Finite Element Discretization Library}, 2017, .
[45] J. Mikyška and A. Firoozabadi, {\it Implementation of higher-order methods for robust and efficient compositional simulation}, J. Comput. Phys., 229 (2010), pp. 2898-2913, . · Zbl 1307.76053
[46] J. Moortgat, S. Sun, and A. Firoozabadi, {\it Compositional modeling of three-phase flow with gravity using higher-order finite element methods}, Water Resour. Res., 47 (2011), W05511.
[47] O. Møyner and K.-A. Lie, {\it A multiscale two-point flux-approximation method}, J. Comput. Phys., 275 (2014), pp. 273-293. · Zbl 1349.76368
[48] M. Pal, S. Lamine, K.-A. Lie, and S. Krogstad, {\it Multiscale method for two and three-phase flow simulation in subsurface petroleum reservoirs}, in Proceedings of the 13th European Conference on the Mathematics of Oil Recovery (ECMOR XIII), Biarritz, France, 2012.
[49] J. E. Pasciak and P. S. Vassilevski, {\it Exact de Rham sequences of spaces defined on macro-elements in two and three spatial dimensions}, SIAM J. Sci. Comput., 30 (2008), pp. 2427-2446, . · Zbl 1195.78061
[50] D. Peaceman, {\it Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability}, Soc. Pet. Eng. J., 23 (1983), pp. 531-543.
[51] Society of Petroleum Engineers, {\it Tenth SPE Comparative Solution Project,} 2001, .
[52] UCD Fault Analysis Group, {\it Saigup–Sensistivity Analysis of the Impact of Geological Uncertainties on Production Forecasting in Clastic Hydrocarbon Reservoirs}, 2000-2004, .
[53] P. S. Vassilevski and U. Villa, {\it A mixed formulation for the Brinkman problem}, SIAM J. Numer. Anal., 52 (2014), pp. 258-281, . · Zbl 1457.65219
[54] P. S. Vassilevski, {\it Sparse matrix element topology with application to AMG(e) and preconditioning}, Numer. Linear Algebra Appl., 9 (2002), pp. 429-444. · Zbl 1071.65538
[55] P. S. Vassilevski, {\it Multilevel Block-Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations}, Springer, New York, 2008. · Zbl 1170.65001
[56] P. S. Vassilevski, {\it Coarse spaces by algebraic multigrid: Multigrid convergence and upscaling error estimates}, Adv. Adapt. Data Anal., 3 (2011), pp. 229-249, . · Zbl 1229.65226
[57] P. S. Vassilevski and U. Villa, {\it A block-diagonal algebraic multigrid preconditioner for the Brinkman problem}, SIAM J. Sci. Comput., 35 (2013), pp. S3-S17, . · Zbl 1282.65133
[58] T. Wallstrom, S. Hou, M. A. Christie, L. J. Durlofsky, D. H. Sharp, and Q. Zou, {\it Application of effective flux boundary conditions to two-phase upscaling in porous media}, Transp. Porous Media, 46 (2002), pp. 155-178, .
[59] H. Zhou, S. H. Lee, and H. A. Tchelepi, {\it Multiscale finite-volume formulation for saturation equations}, Soc. Pet. Eng. J., 17 (2012), SPE-119183-PA, .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.