×

An improved Stirling approximation for trip distribution models. (English) Zbl 1338.90122

Summary: Many trip distribution models used in transport systems planning are designed to solve maximum entropy optimization problems. Discrete by nature, they must be transformed into continuous and differentiable problems, typically by applying the first-order Stirling approximation. Although it does a reasonable job for large trip flows, this approximation produces significant errors when flows are small. This paper presents two alternatives using the second-order Stirling approximation and Burnside’s formula to specify new distribution models that improve prediction for small trip values. In an application to real data for the Santiago, Chile metro system, both proposed formulations obtained results with superior goodness-of-fit and predictive capacity to a traditional model using a first-order Stirling approximation. The version incorporating the second-order Stirling approximation delivered the best performance.

MSC:

90B20 Traffic problems in operations research
62P30 Applications of statistics in engineering and industry; control charts
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrahamsson T, Lundqvist L (1999) Formulation and estimation of combined network equilibrium models with applications to Stockholm. Transp Sci 33:80-100 · Zbl 1002.90505 · doi:10.1287/trsc.33.1.80
[2] Alonso W (1973) National Interregional Demographic Accounts: A Prototype. Monograph 17, Institute of Urban and Regional Development. University of California, Berkeley
[3] Alonso W (1986). Systemic and Log-Linear Models: From Here to There, Then to Now, and This to That. Discussion paper 86-10, Centre for population studies, Harvard University.
[4] Anas A (1981) The estimation of multinomial logit models of joint location and mode choice from aggregated data. J Reg Sci 21(2):223-242 · doi:10.1111/j.1467-9787.1981.tb00696.x
[5] Anas A (1983) Discrete choice theory, information theory and the multinomial logit and gravity models. Transp Res 17:13-23 · doi:10.1016/0191-2615(83)90023-1
[6] Bar-Gera H, Boyce D (2005) Userequilibrium route set analysis of a large road network. In: Mahmassani H (ed) Transportation and Traffic Theory: Flow, Dynamics and Human Interaction. Elsevier, Oxford, pp 673-692 · Zbl 1202.90041
[7] Bikker JA (1992) Internal and external trade liberalization in the EEC: an econometric analysis of international trade flows. Econ Appl 45:91-119
[8] Boyce DE (2007) Forecasting travel on congested urban transportation networks: review and 4 prospects for network equilibrium models. Netw and Spat Econ 7:99-128 · Zbl 1144.90320 · doi:10.1007/s11067-006-9009-0
[9] Boyce D, Bar-Gera H (2003) Validation of multiclass urban travel forecasting models combining origin-destination, mode, and route choices. J Reg Sci 43:517-540 · doi:10.1111/1467-9787.00309
[10] Boyce DE, Bar-Gera H (2004) Multiclass combined models for urban travel forecasting. Netw and Spat Econ 4:115-124 · Zbl 1079.90017 · doi:10.1023/B:NETS.0000015659.39216.83
[11] Briceño L, Cominetti R, Cortés C, Martínez FJ (2008) An integrated behavioral model of land-use and transport system: an extended network equilibrium approach. Netw and Spat Econ 8:201-224 · Zbl 1162.91344 · doi:10.1007/s11067-007-9052-5
[12] Burnside W (1917) A rapidly convergent series for log N! Messenger Math 46:157-159 · JFM 46.0340.02
[13] De Cea J, Fernández JE, De Grange L (2008) Combined models with hierarchical demand choices: a multi-objective entropy optimization approach. Transp Rev 28:415-438 · doi:10.1080/01441640701763128
[14] De Grange L, Fernández JE, De Cea J (2010a) A consolidated model of trip distribution. Transp Res 46E:61-75 · doi:10.1016/j.tre.2009.06.001
[15] De Grange L, Fernández JE, De Cea J, Irrazábal M (2010b) Combined model calibration and spatial aggregation. Netw and Spat Econ 10:551-578 · Zbl 1202.90041 · doi:10.1007/s11067-008-9072-9
[16] De Grange L, Ibeas A, González F (2011) A hierarchical gravity model with spatial correlation: mathematical formulation and parameter estimation. Netw and Spat Econ 11:439-463 · Zbl 1235.91145 · doi:10.1007/s11067-008-9097-0
[17] De Grange L, Boyce D, González F, Ortúzar JD (2013) Integration of spatial correlation into a combined travel model with hierarchical levels. Spat Econ Anal 8:71-91 · doi:10.1080/17421772.2012.754489
[18] De Vos AF, Bikker JA (1982) Interdependent multiplicative models for allocation and aggregates; a generalization of gravity models. Onderzoeksverslag IAWE-80. Vrije Universiteit, Amsterdam
[19] Donoso P, De Grange L (2010) A microeconomic interpretation of the maximum entropy estimator of multinomial logit models and its equivalence to the maximum likelihood estimator. Entropy 12:2077-2084 · Zbl 1229.62154 · doi:10.3390/e12102077
[20] Donoso P, De Grange L, González F (2011) A maximum entropy estimator for the aggregate hierarchical logit model. Entropy 13:1425-1445 · Zbl 1306.62534 · doi:10.3390/e13081425
[21] Fang SC, Tsao SJ (1995) Linearly-constrained entropy maximization problem with quadratic cost and its applications to transportation planning problems. Transp Sci 29:353-365 · Zbl 0853.90090 · doi:10.1287/trsc.29.4.353
[22] Fang S, Rajasekera J, Tsao H (1997) Entropy Optimization and Mathematical Programming. Kluwer Academic Publishers, Norwell, MA · Zbl 0933.90051
[23] Feller W (1966). An introduction to probability theory and its applications - Vol 1, 2nd Edn. Wiley Publications, 50-51. · Zbl 0138.10207
[24] Florian M, Wu JH, He S (1999) A multi-class multi-mode variable demand network equilibrium model with hierarchical logit structures. IX Congreso Chileno de Ingeniería de Transporte, Santiago, 18-22 Octubre 1999
[25] Fotheringham AS (1983) A new set of spatial interaction models: the theory of competing destinations. Environ Plan 15A:15-36 · doi:10.1068/a150015
[26] Fotheringham AS (1986) Modeling hierarchical destination choice. Environ Plan 18A:401-418 · doi:10.1068/a180401
[27] Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer Academic Publishers, Dordrecht
[28] Gonçalves M, Souza JE (2001) Parameter estimation in a trip distribution model by random perturbation of a descent method. Transp Res 35B(2):137-161
[29] Guldmann JM (1999) Competing destinations and intervening opportunities interaction models of inter-city telecommunication flows? Pap Reg Sci 78:179-194 · doi:10.1007/s101100050020
[30] Ham H, Tschangho JK, Boyce D (2005) Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows. Transp Res 39B:65-79 · doi:10.1016/j.trb.2004.02.005
[31] Hasan MK, Dashti HM (2007) A multiclass simultaneous transportation equilibrium model. Netw and Spat Econ 7:197-211 · Zbl 1170.90004 · doi:10.1007/s11067-006-9014-3
[32] Hazewinkel M (2001). Stirling formula. Encyclopaedia of mathematics, Springer, ISBN 978-1556080104.
[33] Kitthamkesorn S, Chen A, Ryu S, Xu X (2013) Modeling mode and route similarities in network equilibrium problem with Go-green modes. Netw and Spat Econ, Online First. doi:10.1007/s11067-013-9201-y · Zbl 1364.90405 · doi:10.1007/s11067-013-9201-y
[34] Knudsen CD, Fotheringham AS (1986) Matrix comparison, goodness-of-fit and spatial interaction modeling. Int Reg Sci Rev 10:127-147 · doi:10.1177/016001768601000203
[35] Morrison WI, Thumann RG (1980) Lagrangian Multiplier Approach to the Solution of a Special Constrained Matrix Problem. J Reg Sci 20(3):279-292
[36] Orpana T, Lampinen J (2003) Building spatial choice models from aggregate data. J Reg Sci 43:319-347 · doi:10.1111/1467-9787.00301
[37] Sen A, Matuszewsky Z (1991) Maximum likelihood estimates of gravity model parameters. J Reg Sci 31:469-486 · doi:10.1111/j.1467-9787.1991.tb00161.x
[38] Thorsen I, Gitlesen JP (1998) Empirical evaluation of alternative model specifications to predict commuting flows. J Reg Sci 38:273-292 · doi:10.1111/1467-9787.00092
[39] Wilson AG (1970) Entropy in Urban and Regional Modeling. Pion, London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.