×

A quantile function approach to the distribution of financial returns following TGARCH models. (English) Zbl 07346646

Summary: We develop a novel quantile function approach to the distribution of financial returns that follow threshold GARCH models. We propose a Bayesian method to do estimation and forecasting simultaneously, which ensures that the density forecasts can take account of the variation of model parameters. This method also allows us to handle multiple thresholds easily. We conduct extensive simulation studies and apply our method to Nasdaq returns. The results show that our approach is robust to model specification errors and outperforms some commonly used benchmark models.

MSC:

62-XX Statistics

Software:

gldex; CAViaR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ausn, MC, Galeano, P (2007) Bayesian estimation of the Gaussian mixture GARCH model. Computational Statistics & Data Analysis, 51, 2636-52. · Zbl 1161.62397 · doi:10.1016/j.csda.2006.01.006
[2] Bauwens, L, Lubrano, M (2002) Bayesian option pricing using asymmetric GARCH models. Journal of Empirical Finance, 9, 321-42. · doi:10.1016/S0927-5398(01)00058-5
[3] Black, F (1976) Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 177-81.
[4] Bollerslev, T (1986) Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-27. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[5] Bondell, HD, Reich, BJ, Wang, H (2010) Non-crossing quantile regression curve estimation. Biometrika, 97, 825-38. · Zbl 1204.62061 · doi:10.1093/biomet/asq048
[6] Brooks, C (2012) Introductory Econometrics for Finance. Cambridge: Cambridge University Press.
[7] Brown, RG (1959) Statistical Forecasting for Inventory Control. New York: McGraw-Hill. · Zbl 0095.14606
[8] Brown, RG (1962) Smoothing, Forecasting and Prediction of Discrete Time Series. Englewood Cliffs, NJ: Prentice-Hall.
[9] Cai, Y (2010) Forecasting for quantile self exciting threshold autoregressive time series models. Biometrika, 97, 199-208. · Zbl 1183.62158 · doi:10.1093/biomet/asp070
[10] Cai, Y (2016) A general quantile function model for economic and financial time series. Econometric Reviews, 35, 1173-93. · Zbl 1491.62030 · doi:10.1080/07474938.2014.976528
[11] Cai, Y, Montes-Rojas, G, Olmo, J (2013) A quantile double AR model: estimation and forecasting. Journal of Forecasting, 32, 551-60. · Zbl 1397.62400 · doi:10.1002/for.2261
[12] Cai, Y, Stander, J (2008) Quantile self-exciting threshold autoregressive time series models. Journal of Time Series Analysis, 29, 186-202. · Zbl 1165.62062 · doi:10.1111/j.1467-9892.2007.00551.x
[13] Chen, CWS, So, MKP (2006) On a threshold heteroscedastic model. Inter-national Journal of Forecasting, 22, 73-89. · doi:10.1016/j.ijforecast.2005.08.001
[14] Chen, CWS, So, MKP, Liu, FC (2011) A review of threshold time series models in finance. Statistics and its Interface, 4, 167-81. · Zbl 1229.91354 · doi:10.4310/SII.2011.v4.n2.a12
[15] Dellaportas, P, Vrontos, ID (2007) Modelling volatility asymmetries: a Bayesian analysis of a class of tree structured multivariate GARCH models. The Econometrics Journal, 10, 503-20. · Zbl 1126.62098 · doi:10.1111/j.1368-423X.2007.00219.x
[16] Diebold, FX, Gunther, TA, Tay, AS (1998) Evaluating density forecasts. International Economic Review, 39, 863-83. · doi:10.2307/2527342
[17] Engle, RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. · Zbl 0491.62099 · doi:10.2307/1912773
[18] Engle, RF, Manganelli, S (2004) CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22, 367-81. · doi:10.1198/073500104000000370
[19] Fournier, B, Rupin, N, Bigerelle, M, Najjar, D, Iost, A, Wilcox, R (2007). Estimating the parameters of a generalized lambda distribution. Computational Statistics & Data Analysis, 51, 2813-35. · Zbl 1161.62324 · doi:10.1016/j.csda.2006.09.043
[20] Franses, PH, Van Dijk, D (1996) Forecasting stock market volatility using (nonlinear) Garch models. Journal of Forecasting, 15, 229-35. · doi:10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3
[21] Freimer, M, Mudholkar, G, Kollia, G, Lin, C (1988) A study of the generalised Tukey lambda family. Communications in Statistics-Theory Methods, 17, 3547-67. · Zbl 0696.62021 · doi:10.1080/03610928808829820
[22] Gaglianone, WP, Lima, LR (2012) Costructing density forecasts from quantile regressions. Journal of Mondy, Credit and Banking, 44, 1589-1607. · doi:10.1111/j.1538-4616.2012.00545.x
[23] Gelfand, AE, Dey, D (1994) Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society Series B, 56, 501-14. · Zbl 0800.62170
[24] Gilchrist, WG (2000) Statistical Modelling with Quantile Functions. London: Chapman & Hall/CRC. · doi:10.1201/9781420035919
[25] Glosten, LR, Jagannathan, R, Runkle, DE (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779-1801. · doi:10.1111/j.1540-6261.1993.tb05128.x
[26] Granger, CWJ (1992) Forecasting stock market prices: Lessons for forecasters. International Journal of Forecasting, 8, 3-13. · doi:10.1016/0169-2070(92)90003-R
[27] Jensen, MJ, Maheu, JM (2013) Bayesian semiparametric multivariate GARCH modelling. Journal of Econometrics, 176, 3-17. · Zbl 1284.62559 · doi:10.1016/j.jeconom.2013.03.009
[28] Karian, ZA, Dudewicz, EJ (1999) Fitting the generalised lambda distribution to data: a method based on percentiles. Communications in Statistics-Simulation and Computation, 28, 793-819. · Zbl 0949.62013 · doi:10.1080/03610919908813579
[29] Karian, ZA, Dudewicz, EJ, McDonald, P (1996) The extended generalized lambda distribution system for fitting distributions to data: History, completion of theory, tables, applications, the final word on moment fits. Communications in Statistics-Simulation and Computation, 25, 611-42. · Zbl 0909.62007 · doi:10.1080/03610919608813333
[30] King, R, MacGillivray, H (1999) A starship estimation method for the generalised lambda distributions. Australia New Zealand Journal of Statistics, 41, 353-74. · Zbl 1055.62513 · doi:10.1111/1467-842X.00089
[31] Koenker, R (2005) Quantile Regression. Cambridge: Cambridge University Press. · Zbl 1111.62037 · doi:10.1017/CBO9780511754098
[32] Koenker, R, Bassett, G (1978) Regression quantiles. Econometrica, 46, 33-50. · Zbl 0373.62038 · doi:10.2307/1913643
[33] Koenker, R, Zhao, Q (1996) Conditional quantile estimation and inference for ARCH models. Econometric Theory, 12, 793-813. · doi:10.1017/S0266466600007167
[34] Koop, G, Potter, SM (2003) Bayesian analysis of endogenous delay threshold models. Journal of Business & Economic Statistics, 21, 93-103. · doi:10.1198/073500102288618801
[35] Li, YK, Lange, M, Stocks, C (2012) Monitoring Forecasting Systems: Revisit Trigg’s Tracking Signal. The 32nd Annual International Symposium on Forecasting 24-27 June 2012, Boston, USA.
[36] Nelson, DB (1991) Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59, 347-70. · Zbl 0722.62069 · doi:10.2307/2938260
[37] O’Hagan, A, Forster, JJ (2004) Bayesian Inference. London: Arnold. · Zbl 1058.62002
[38] Ozturk, A, Dale, RF (1985) Least squares estimation of the parameters of the generalized lambda distribution. Technometrics, 27, 81-4. · doi:10.1080/00401706.1985.10488017
[39] Schwert, GW (1990) Stock volatility and the crash of ’87. Review of Financial Studies, 3, 77-102. · doi:10.1093/rfs/3.1.77
[40] So, MKP, Chung, RSW (2015) Statistical inference for conditional quantiles in nonlinear time series. Journal of Econometrics, 189, 457-72. · Zbl 1337.62280 · doi:10.1016/j.jeconom.2015.03.037
[41] Su, S (2007a). Numerical maximum log likelihood estimation for generalized lambda distributions. Computational Statistics & Data Analysis, 51, 3983-98. · Zbl 1161.62329 · doi:10.1016/j.csda.2006.06.008
[42] Su, S (2007b) Fitting single and mixture of generalized lambda distributions to data via discretized and maximum likelihood methods: GLDEX in R. Journal of Statistical Software, 21, 1-17. · doi:10.18637/jss.v021.i09
[43] Taylor, JW (2008) Using exponentially weighted quantile regression to estimate value at risk and expected shortfall. Journal of Financial Econometrics, 6, 382-406. · doi:10.1093/jjfinec/nbn007
[44] Virbickaite, A, Ausin, CM, Galeano, P (2015) Bayesian inference methods for univariate and multivariate GARCH models: a survey. Journal of Economic Surveys, 29, 76-96. · doi:10.1111/joes.12046
[45] Vrontos, ID, Dellaportas, P, Politis, DN (2012) Full Bayesian inference for GARCH and EGARCH models. Journal Journal of Business & Economic Statistics, 18, 187-98.
[46] Xiao, Z, Koenker, R (2009). Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models. Journal of the American Statistical Association, 104, 1696-1712. · Zbl 1205.62136 · doi:10.1198/jasa.2009.tm09170
[47] Yang, YL, Chang, CL (2008). A double-threshold GARCH model of stock market and currency shocks on stock returns. Mathematics and Computers in Simulation, 79, 458-74. · Zbl 1152.91740 · doi:10.1016/j.matcom.2008.01.048
[48] Yu, PLH, Li, WK, Jin, S (2010) On some models for value at risk. Economictric Reviews, 29, 622-41. · Zbl 1205.91095 · doi:10.1080/07474938.2010.481972
[49] Zakoian, JM (1994) Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18, 931-55. · Zbl 0875.90197 · doi:10.1016/0165-1889(94)90039-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.