×

The effect of tensor interaction in splitting the energy levels of relativistic systems. (English) Zbl 1375.81092

Summary: We solve approximately Dirac equation for Eckart plus Hulthen potentials with Coulomb-like and Yukawa-like tensor interaction in the presence of spin and pseudospin symmetry for \(k \neq 0\). The formula method is used to obtain the energy eigenvalues and wave functions. We also discuss the energy eigenvalues and the Dirac spinors for Eckart plus Hulthen potentials with formula method. To show the accuracy of the present model, some numerical results are shown in both pseudospin and spin symmetry limits.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V70 Many-body theory; quantum Hall effect
81V55 Molecular physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Oyewumi, K. J.; Akoshile, C. O., Bound-state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry, The European Physical Journal A, 45, 3, 311-318 (2010) · doi:10.1140/epja/i2010-11007-0
[2] Wang, I. C.; Wong, C. Y., Finite-size effect in the Schwinger particle-production mechanism, Physical Review D, 38, 1, 348-359 (1988) · doi:10.1103/physrevd.38.348
[3] Alberto, P.; Lisboa, R.; Malheiro, M.; de Castro, A. S., Tensor coupling and pseudospin symmetry in nuclei, Physical Review C, 71, 3 (2005) · doi:10.1103/physrevc.71.034313
[4] Salamin, Y. I.; Hu, S. X.; Hatsagortsyan, K. Z.; Keitel, C. H., Relativistic high-power laser-matter interactions, Physics Reports, 427, 2-3, 41-155 (2006) · doi:10.1016/j.physrep.2006.01.002
[5] Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Chiral tunnelling and the Klein paradox in graphene, Nature Physics, 2, 9, 620-625 (2006) · doi:10.1038/nphys384
[6] Cheng, Y.-F.; Dai, T.-Q., Exact solutions of the Klein-Gordon equation with a ring-shaped modified Kratzer potential, Chinese Journal of Physics, 45, 5, 480-487 (2007)
[7] Arima, A.; Harvey, M.; Shimizu, K., Pseudo LS coupling and pseudo SU3 coupling schemes, Physics Letters B, 30, 8, 517-522 (1969)
[8] Hecht, K. T.; Adler, A., Generalized seniority for favored \(J \neq 0\) pairs in mixed configurations, Nuclear Physics A, 137, 1, 129-143 (1969) · doi:10.1016/0375-9474(69)90077-3
[9] Ginocchio, J. N., Relativistic symmetries in nuclei and hadrons, Physics Reports, 414, 4-5, 165-261 (2005) · doi:10.1016/j.physrep.2005.04.003
[10] Lisboa, R.; Malheiro, M.; de Castro, A. S.; Alberto, P.; Fiolhais, M., Pseudospin symmetry and the relativistic harmonic oscillator, Physical Review C, 69, 2 (2004) · Zbl 1087.83504 · doi:10.1103/physrevc.69.024319
[11] Eshghi, M., Makarov potential in relativistic equation via Laplace transformation approach, Canadian Journal of Physics, 91, 1, 71-74 (2013) · doi:10.1139/cjp-2012-0290
[12] Aydogdu, O.; Sever, R., Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential, The European Physical Journal A, 43, 1, 73-81 (2010) · doi:10.1140/epja/i2009-10890-6
[13] Akcay, H.; Tezcan, C., Exact solutions of the Dirac equation with harmonic oscillator potential including a Coulomb-like tensor potential, International Journal of Modern Physics C, 20, 930-941 (2009) · Zbl 1168.81324
[14] Jia, C.-S.; Guo, P.; Peng, X.-L., Exact solution of the Dirac-Eckart problem with spin and pseudospin symmetry, Journal of Physics A: Mathematical and General, 39, 24, 7737 (2006) · Zbl 1094.81021 · doi:10.1088/0305-4470/39/24/010
[15] Contreras-Astorga, A.; Fernández, D. J.; Negro, J., Solutions of the Dirac equation in a magnetic field and intertwining operators, Symmetry, Integrability and Geometry: Methods and Applications, 8, article 082 (2012) · Zbl 1269.81039 · doi:10.3842/SIGMA.2012.082
[16] Feizi, H.; Rajabi, A. A.; Shojaei, M. R., Supersymmetric solution of the Schrödinger equation for Woods-Saxon potential by using the Pekeris approximation, Acta Physica Polonica B, 42, 10, 2143-2152 (2011) · Zbl 1371.81137 · doi:10.5506/aphyspolb.42.2143
[17] Ciftci, H.; Hall, R. L.; Saad, N., Asymptotic iteration method for eigenvalue problems, Journal of Physics A: Mathematical and General, 36, 47, 11807-11816 (2003) · Zbl 1070.34113 · doi:10.1088/0305-4470/36/47/008
[18] Özer, O.; Lévai, G., Asymptotic iteration method applied to bound-state problems with unbroken and broken supersymmetry, Romanian Journal of Physics, 57, 3-4, 582-593 (2012)
[19] Dong, S.-H., Factorization Method in Quantum Mechanics (2007), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1130.81001
[20] Infeld, L.; Hull, T. E., The factorization method, Reviews of Modern Physics, 23, 1, 21-68 (1951) · Zbl 0043.38602 · doi:10.1103/RevModPhys.23.21
[21] Arda, A.; Sever, R., Exact solutions of the Morse-like potential, step-up and step-down operators via Laplace transform approach, Communications in Theoretical Physics, 58, 1, 27-30 (2012) · Zbl 1263.81145 · doi:10.1088/0253-6102/58/1/05
[22] Roy, A. K., Calculation of the spiked harmonic oscillators through a generalized pseudospectral method, Physics Letters A, 321, 4, 231-238 (2004) · Zbl 1118.81432 · doi:10.1016/j.physleta.2003.12.037
[23] Roy, A. K., Studies on some exponential-screened Coulomb potentials, International Journal of Quantum Chemistry, 113, 10, 1503-1510 (2013) · doi:10.1002/qua.24351
[24] Cai, J. M.; Cai, P. Y.; Inomata, A., Path-integral treatment of the Hulthén potential, Physical Review A, 34, 6, 4621-4628 (1986) · doi:10.1103/PhysRevA.34.4621
[25] Diaf, A.; Chouchaoui, A.; Lombard, R. J., Feynman integral treatment of the Bargmann potential, Annals of Physics, 317, 2, 354-365 (2005) · Zbl 1139.81366 · doi:10.1016/j.aop.2004.11.010
[26] Diaf, A.; Chouchaoui, A., \(l\)-states of the Manning-Rosen potential with an improved approximate scheme and Feynman path integral formalism, Physica Scripta, 84, 1 (2011) · Zbl 1221.81077 · doi:10.1088/0031-8949/84/01/015004
[27] Shojaei, M. R.; Rajabi, A. A.; Farrokh, M.; Zoghi-Foumani, N., Energy levels of spin-1/2 particles with Yukawa interaction, Journal of Modern Physics, 5, 9, 773-780 (2014) · doi:10.4236/jmp.2014.59087
[28] Nikiforov, A. F.; Uvarov, V. B., Special Functions of Mathematical Physics (1988), Berlin, Germany: Birkhäuser, Berlin, Germany · Zbl 0624.33001 · doi:10.1007/978-1-4757-1595-8
[29] Shojaei, M. R.; Mousavi, M., Solutions of the Klein-Gordon equation for \(1 \neq 0\) with positiondependent mass for modified Eckart potential plus Hulthen potential, International Journal of Physical Sciences, 10, 9, 324-328 (2015) · doi:10.5897/IJPS2015.4303
[30] Ikot, A. N.; Udoimuk, A. B.; Akpabio, L. E., Bound states solution of Klein-Gordon equation with type-I equal vector and scalar Poschl-Teller potential for arbitray \(l\)-state, American Journal of Scientific and Industrial Research, 2, 2, 179-183 (2011) · doi:10.5251/ajsir.2011.2.2.179.183
[31] Qiang, W. C., Bound states of the Klein-Gordon equation for ring-shaped Kratzer-type potential, Chinese Physics, 13, 575-578 (2004)
[32] Qiang, W.-C., Bound states of the Klein-Gordon and Dirac equations for potential \(V \left(r\right) = A \overset{-}{r}^2 - B \overset{-}{r}^1\), Chinese Physics, 12, 10, 1054-1057 (2003) · doi:10.1088/1009-1963/12/10/302
[33] Berkdemir, C.; Berkdemir, A.; Sever, R., Systematical approach to the exact solution of the Dirac equation for a deformed form of the Woods-Saxon potential, Journal of Physics A: Mathematical and General, 39, 43, 13455-13463 (2006) · Zbl 1105.81027 · doi:10.1088/0305-4470/39/43/005
[34] Guo, J.-Y.; Sheng, Z.-Q., Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry, Physics Letters A, 338, 2, 90-96 (2005) · Zbl 1136.81357 · doi:10.1016/j.physleta.2005.02.026
[35] Zhang, X. C.; Liu, Q. W.; Jia, C. S.; Wang, L. Z., Bound states of the Dirac equation with vector and scalar Scarf-type potentials, Physics Letters A, 340, 1-4, 59-69 (2005) · Zbl 1145.81363 · doi:10.1016/j.physleta.2005.04.011
[36] Scarf, F., New soluble energy band problem, Physical Review, 112, 4, 1137-1140 (1958) · Zbl 0083.23007 · doi:10.1103/physrev.112.1137
[37] Chen, C.-Y., Exact solutions of the Dirac equation with scalar and vector Hartmann potentials, Physics Letters A, 339, 3-5, 283-287 (2005) · Zbl 1145.81352 · doi:10.1016/j.physleta.2005.03.031
[38] de Souza Dutra, A.; Hott, M., Dirac equation exact solutions for generalized asymmetrical Hartmann potentials, Physics Letters A, 356, 3, 215-219 (2006) · Zbl 1160.35514 · doi:10.1016/j.physleta.2006.03.042
[39] Ikhdair, S. M.; Falaye, B. J., Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction, European Physical Journal Plus, 129, 1, 1-15 (2014) · doi:10.1140/epjp/i2014-14001-y
[40] Alhaidari, A. D., Relativistic extension of shape-invariant potentials, Journal of Physics A: Mathematical and General, 34, 46, 9827-9833 (2001) · Zbl 0992.81083 · doi:10.1088/0305-4470/34/46/306
[41] Farrokh, M.; Shojaeia, M. R.; Rajabi, A. A., Klein-Gordon equation with Hulth’en potential and position-dependent mass, The European Physical Journal Plus, 128, article 14 (2013) · doi:10.1140/epjp/i2013-13014-4
[42] Eckart, C., The penetration of a potential barrier by electrons, Physical Review, 35, article 1303 (1930) · JFM 56.0750.03 · doi:10.1103/physrev.35.1303
[43] Falaye, B. J., Any \(l\)-state solutions of the Eckart potential via asymptotic iteration method, Central European Journal of Physics, 10, 960-965 (2012)
[44] Falaye, B. J.; Ikhdair, S. M.; Hamzavi, M., Formula method for bound state problems, Few-Body Systems, 56, 1, 63-78 (2015) · doi:10.1007/s00601-014-0937-9
[45] Greiner, W., Relativistic Quantum Mechanics:Wave Equations (2000), Berlin, Germany: Springer, Berlin, Germany · Zbl 0998.81503
[46] Satchler, G. R., Direct Nuclear Reactions (1983), London, UK: Oxford University Press, London, UK · Zbl 0067.22502
[47] Hill, E. L., The theory of vector spherical harmonics, American Journal of Physics, 22, article 211 (1954) · Zbl 0057.05303 · doi:10.1119/1.1933682
[48] Greene, R. L.; Aldrich, C., Variational wave functions for a screened Coulomb potential, Physical Review A, 14, 6, 2363-2366 (1976) · doi:10.1103/PhysRevA.14.2363
[49] Jia, C.-S.; Chen, T.; Cui, L.-G., Approximate analytical solutions of the Dirac equation with the generalized Pöschl-Teller potential including the pseudo-centrifugal term, Physics Letters A, 373, 18-19, 1621-1626 (2009) · Zbl 1229.81076 · doi:10.1016/j.physleta.2009.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.