×

Regularization of Poisson-Boltzmann-type equations with singular source terms using the range-separated tensor format. (English) Zbl 1466.65180

Summary: In this paper, we present a new regularization scheme for the linearized Poisson-Boltzmann equation (PBE) which models the electrostatic potential of biomolecules in a solvent. This scheme is based on the splitting of the target potential into the short- and long-range components localized in the molecular region by using the range-separated (RS) tensor format from our work [ibid. 40, No. 2, A1034–A1062 (2018; Zbl 1446.65202)] for representation of the discretized multiparticle Dirac delta [B. N. Khoromskij, “Range-separated tensor decomposition of the discretized Dirac delta and elliptic operator inverse”, J. Comput. Phys. 401, Article ID 108998, 26 p. (2018; doi:10.1016/j.jcp.2019.108998)] constituting the highly singular right-hand side in the PBE. From the computational point of view our regularization approach requires only the modification of the right-hand side in the PBE so that it can be implemented within any open-source grid-based software package for solving PBE that already includes some FEM/FDM disretization scheme for elliptic PDE and solver for the arising linear system of equations. The main computational benefits are twofold. First, one applies the chosen PBE solver only for the smooth long-range (regularized) part of the collective potential with the regular right-hand side represented by a low-rank RS tensor with a controllable precision. Thus, we eliminate the numerical treatment of the singularities in the right-hand side and do not change the interface and boundary conditions. And second, the elliptic PDE need not be solved for the singular part in the right-hand side at all, since the short-range part of the target potential of the biomolecule is precomputed independently on a computational grid by simple one-dimensional tensor operations. The total potential is then obtained by adding the numerical solution of the PBE for the smooth long-range part to the directly precomputed tensor representation for the short-range contribution. Numerical tests illustrate that the new regularization scheme, implemented by a simple modification of the right-hand side in the chosen PBE solver, improves the accuracy of the approximate solution on rather coarse grids. The scheme also demonstrates good convergence behavior on a sequence of refined grids.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65F50 Computational methods for sparse matrices
78A30 Electro- and magnetostatics
35Q20 Boltzmann equations
35Q60 PDEs in connection with optics and electromagnetic theory

Citations:

Zbl 1446.65202

Software:

APBS; MPBEC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. A. Baker, Poisson-Boltzmann methods for biomolecular electrostatics, Methods Enzymology, 383 (2004), pp. 94-118.
[2] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 10037-10041.
[3] V. Barone, M. Cossi, and J. Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 107 (1997), pp. 3210-3221.
[4] D. Bashford and D. A. Case, Generalized born models of macromolecular solvation effects, Annu. Rev. Phys. Chem., 51 (2000), pp. 129-152.
[5] P. Benner, L. Feng, C. Kweyu, and M. Stein, Fast Solution of the Poisson-Boltzmann Equation with Nonaffine Parametrized Boundary Conditions Using the Reduced Basis Method, arXiv:1705.08349, 2017.
[6] P. Benner, V. Khoromskaia, and B. N. Khoromskij, Range-Separated Tensor Formats for Numerical Modeling of Many-Particle Interaction Potentials, arXiv:1606.09218v3, 2016. · Zbl 1446.65202
[7] P. Benner, V. Khoromskaia, and B. N. Khoromskij, Range-separated tensor format for many-particle modeling, SIAM J. Sci. Comput., 2 (2018), pp. A1034-A1062. · Zbl 1446.65202
[8] C. Bertoglio and B. N. Khoromskij, Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels, Comput. Phys. Commun., 183 (2012), pp. 904-912. · Zbl 1308.65213
[9] H. Boschitsch and M. O. Fenley, An adaptive Cartesian grid-based Poisson-Boltzmann solver: Energy and surface electrostatic properties, in Computational Electrostatics for Biological Applications, W. Rocchia, M. Spagnuolo, eds., Springer, Cham, 2015, pp. 73-110.
[10] E. Cances, Y. Maday, and B. Stamm, Domain decomposition for implicit solvation models, J. Chem. Phys., 139 (2013), 054111.
[11] J. Chen and W. Geng, On preconditioning the treecode-accelerated boundary integral (TABI) Poisson-Boltzmann solver, J. Comput. Phys., 373 (2018), pp. 750-762. · Zbl 1416.65487
[12] L. Chen, M. Holst, and J. Xu, The finite element approximation of the nonlinear Poisson-Boltzmann equation, SIAM J. Numer. Anal., 45 (2007), pp. 2298-2320. · Zbl 1152.65478
[13] I.-L. Chern, J.-G. Liu, and W.-C. Wang, Accurate evaluation of electrostatics for macromolecules in solution, Methods Appl. Anal., 10 (2003), pp. 309-328. · Zbl 1099.92500
[14] M. L. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science, 221 (1983), pp. 709-713.
[15] M. E. Davis and A. McCammon, Electrostatics in biomolecular structure and dynamics, Chem. Rev., 90 (1990), pp. 509-521.
[16] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253-1278. · Zbl 0962.15005
[17] M. Deserno and C. Holm, How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines, J. Chem. Phys., 109 (1998), pp. 7678-7693.
[18] F. Fogolari, A. Brigo, and H. Molinari, The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology, J. Mol. Recognit., 15 (2002), pp. 377-392.
[19] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Hierarchical tensor-product approximation to the inverse and related operators in high-dimensional elliptic problems, Computing, 74 (2005), pp. 131-157. · Zbl 1071.65032
[20] W. Geng and S. Zhao, A two-component Matched Interface and Boundary (MIB) regularization for charge singularity in implicit solvation, J. Comput. Phys., 351 (2017), pp. 25-39. · Zbl 1375.78008
[21] M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzman equation, J. Phys. Chem., 97 (993), pp. 3591-3600.
[22] W. Hackbusch and B. Khoromskij, Low-rank Kronecker product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions, Computing, 76 (2006), pp. 177-202. · Zbl 1087.65049
[23] R. C. Harris, T. Mackoy, and M. O. Fenley, Problems of robustness in Poisson-Boltzmann binding free energies, J. Chem. Theory Comput., 11 (2015), pp. 705-712.
[24] M. Holst, N. Baker, and F. Wang, Adaptive multilevel finite element solution of the Poisson-Boltzmann equation: Algorithms and examples, J. Comput. Chem., 21 (2000), pp. 1319-1342.
[25] M. Holst and F. Saied, Multigrid solution of the Poisson-Boltzmann equation, J. Comput. Chem., 14 (1993), pp. 105-113.
[26] M. J. Holst, Multilevel Methods for the Poisson-Boltzmann Equation. Ph.D. thesis, Numerical Computing Group, University of Illinois, Urbana-Champaign, 1994.
[27] B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Sci. New Ser., 268 (1995), pp. 1144-1149.
[28] P. H. Hünenberger and J. A. McCammon, Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: A continuum electrostatics study, Biophys. Chemistry, 78 (1999), pp. 69-88.
[29] W. Im, D. Beglov, and B. Roux, Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Comput. Phys. Commun., 111 (1998), pp. 59-75. · Zbl 0935.78019
[30] J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999. · Zbl 0920.00012
[31] V. Khoromskaia and B. N. Khoromskij, Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation, Comput. Phys. Commun., 185 (2014). · Zbl 1360.78016
[32] V. Khoromskaia and B. N. Khoromskij, Tensor Numerical Methods in Quantum Chemistry, De Gruyter, Berlin, 2018. · Zbl 1503.65003
[33] B. N. Khoromskij, Structured rank-\((r_1,\ldots,r_d)\) decomposition of function-related operators in \(\mathbb{R}^d\), Comput. Methods Appl. Math., 6 (2006), pp. 194-220. · Zbl 1120.65052
[34] B. N. Khoromskij, Tensor Numerical Methods in Scientific Computing, De Gruyter, Berlin, 2018. · Zbl 1405.65002
[35] B. N. Khoromskij, Range-separated tensor representation of the discretized multidimensional Dirac delta and elliptic operator inverse, J. Comput. Phys., 401 (2020), 108998. · Zbl 1453.65035
[36] B. N. Khoromskij and V. Khoromskaia, Multigrid accelerated tensor approximation of function related multidimensional arrays, SIAM J. Sci. Comput., 31 (2009), pp. 3002-3026. · Zbl 1197.65215
[37] J. G. Kirkwood, Theory of solutions of molecules containing widely separated charges with special application to zwitterions, J. Chem. Phys., 2 (1934), pp. 351-361. · Zbl 0009.27504
[38] C. Kweyu, L. Feng, M. Stein, and P. Benner, Fast solution of the linearized Poisson–Boltzmann equation with nonaffine parametrized boundary conditions using the reduced basis method, Comput. Vis. Sci., 23 (2020), pp. 1-19. · Zbl 07704919
[39] C. Kweyu, M. Hess, L. Feng, M. Stein, and P. Benner, Reduced basis method for Poisson-Boltzmann Equation, in ECCOMAS Congress 2016, Volume 2, M. Papadrakakis, V. Papadopoulos, G. Stefanou, and V. Plevris, eds., Athens, 2016, pp. 4187-4195.
[40] C. M. Kweyu, Fast Solution of the Poisson-Boltzmann Equation by the Reduced Basis Method and Range-Separated Canonical Tensor Format, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2019.
[41] M. Le Du, P. Marchot, P. Bougis, and J. Fontecilla-Camps, 1.9 Angstrom resolution structure of fasciculine 1, an anti-acetylcholinesterase toxin from green mamba snake venom, J. Biol. Chem., 267 (1992), pp. 22122-22130.
[42] E. Lindgren, A. J. A. J. Stace, Polack, E. Y. Maday, B. Stamm, and E. Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems, J. Comput. Phys., 371 (2018), pp. 712-731. · Zbl 1415.78002
[43] F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, Domain decomposition for implicit solvation models, J. Chem. Theory. Comput., 9 (2013), pp. 3637-3648.
[44] B. Lu, X. Cheng, J. Huang, and J. A. McCammon, An adaptive fast multipole boundary element method for Poisson-Boltzmann electrostatics, J. Chem. Theory Comput., 5 (2009), pp. 1692-1699.
[45] B. Lu, D. Zhang, and A. McCammon, Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method, J. Chem. Phys., 122 (2005), 214102.
[46] B. Z. Lu, Y. C. Zhou, M. J. Holst, and J. A. McCammon, Recent progress in numerical methods for Poisson-Boltzmann equation in biophysical applications, Commun. Comput. Phys., 3 (2008), pp. 973-1009. · Zbl 1186.92005
[47] M. Mirzadeh, M. Theillard, A. Helgadottir, D. Boy, and F. Gibou, An adaptive, finite difference solver for the nonlinear Poisson-Boltzmann equation with applications to biomolecular computations, Commun. Comput. Phys., 13 (2013), pp. 150-173. · Zbl 1388.65135
[48] Y. Notay, An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37 (2010), pp. 123-146. · Zbl 1206.65133
[49] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2288-A2316. · Zbl 1250.76139
[50] E. L. Pollock and J. Glosli, Comments on P(3)m, FMM and the Ewald method for large periodic Coulombic systems, Comput. Phys. Commun., 95 (1996), pp. 93-110. · Zbl 0921.65081
[51] P. Ren, J. Chun, D. G. Thomas, M. J. Schnieders, M. Marucho, J. Zhang, and N. A. Baker, Biomolecular electrostatics and solvation: a computational perspective, Quart. Rev. Biophys., 45 (2012), pp. 427-491.
[52] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis with Applications in the Chemical Sciences, Wiley, New York, 2004.
[53] M. Stein, R. R. Gabdoulline, and R. C. Wade, Cross-species analysis of the glycolitic pathway by comparison of molecular interaction fields, Molecular Biosystems, 6 (2010), pp. 162-174.
[54] S. Vergara-Perez and M. Marucho, MPBEC, a Matlab program for biomolecular electrostatic calculations, Comput. Phys. Commun., 198 (2016), pp. 179-194.
[55] J. Wagoner and N. Baker, Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson-Boltzmann models, J. Comput. Chem., 25 (2004), pp. 1623-1629.
[56] C. Wang, J. Wang, Q. Cai, Z. Li, H. K. Zhao, and R. Luo, Exploring accurate Poisson-Boltzmann methods for biomolecular simulations, Comput. Theor. Chem., 1024 (2013), pp. 34-44.
[57] D. Xie, New solution decomposition and minimization scheme for Poisson-Boltzmann equation in calculation of biomolecular electrostatics, J. Comput. Phys., 275 (2014), pp. 294-309. · Zbl 1349.78077
[58] D. Xie and J. Ying, A new box iterative method for a class of nonlinear interface problems with application in solving Poisson-Boltzmann equation, J. Comput. Appl. Math., 307 (2016), pp. 319-334. · Zbl 1348.65170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.