×

Supercritical mean field equations on convex domains and the Onsager’s statistical description of two-dimensional turbulence. (English) Zbl 1317.35188

Summary: We are motivated by the study of the Microcanonical Variational Principle within Onsager’s description of two-dimensional turbulence in the range of energies where the equivalence of statistical ensembles fails. We obtain sufficient conditions for the existence and multiplicity of solutions for the corresponding Mean Field Equation on convex and “thin” enough domains in the supercritical (with respect to the Moser-Trudinger inequality) regime. This is a brand new achievement since existence results in the supercritical region were previously known only on multiply connected domains. We then study the structure of these solutions by the analysis of their linearized problems and we also obtain a new uniqueness result for solutions of the Mean Field Equation on thin domains whose energy is uniformly bounded from above. Finally we evaluate the asymptotic expansion of those solutions with respect to the thinning parameter and, combining it with all the results obtained so far, we solve the Microcanonical Variational Principle in a small range of supercritical energies where the entropy is shown to be concave.

MSC:

35Q35 PDEs in connection with fluid mechanics
76F55 Statistical turbulence modeling
32C20 Normal analytic spaces
35P05 General topics in linear spectral theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baraket S., Pacard F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. PDE6, 1-38 (1998) · Zbl 0890.35047 · doi:10.1007/s005260050080
[2] Bartolucci D.: On the classification of N-point concentrating solutions for mean field equations and the critical set of the N-vortex singular Hamiltonian on the unit disk. Acta Appl. Math. 110(1), 1-22 (2010) · Zbl 1192.35089 · doi:10.1007/s10440-008-9376-2
[3] Bartolucci D.: Stable and unstable equilibria of uniformly rotating self-gravitating cylinders. Int. J. Mod. Phys. D21(13), 1250087 (2012) · Zbl 1263.83040 · doi:10.1142/S0218271812500873
[4] Bartolucci D.: On the best pinching constant of conformal metrics on \[{\mathbb{S}^2}\] S2 with one and two conical singularities. J. Geom. Anal. 23, 855-877 (2013) · Zbl 1269.30045 · doi:10.1007/s12220-011-9266-0
[5] Bartolucci, D., De Marchis, F.: On the Ambjorn-Olesen electroweak condensates. J. Math. Phys. 53, 073704 (2012). doi:10.1063/1.4731239 · Zbl 1276.81124
[6] Bartolucci, D., De Marchis, F., Malchiodi, A.: Supercritical conformal metrics on surfaces with conical singularities. Int. Math. Res. Not. 24, 5625-5643 (2011). doi:10.1093/imrn/rnq285 · Zbl 1254.30066
[7] Bartolucci D., Lin C.S.: Uniqueness results for mean field equations with singular data. Comm. PDE34(7), 676-702 (2009) · Zbl 1185.35288 · doi:10.1080/03605300902910089
[8] Bartolucci D., Lin C.S.: Sharp existence results for mean field equations with singular data. J. Diff. Equ. 252(7), 4115-4137 (2012) · Zbl 1238.35035 · doi:10.1016/j.jde.2011.12.014
[9] Bartolucci, D., Lin, C.S.: Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter. Math. Ann. 359, 1-44 (2014). doi:10.1007/s00208-013-0990-6 · Zbl 1300.35058
[10] Bartolucci D., Lin C.S., Tarantello G.: Uniqueness and symmetry results for solutions of a mean field equation on \[{\mathbb{S}^2}\] S2 via a new bubbling phenomenon. Comm. Pure Appl. Math. 64(12), 1677-1730 (2011) · Zbl 1250.58009 · doi:10.1002/cpa.20385
[11] Bartolucci D., Malchiodi A.: An improved geometric inequality via vanishing moments, with applications to singular Liouville equations. Comm. Math. Phys. 322, 415-452 (2013) · Zbl 1276.58005 · doi:10.1007/s00220-013-1731-0
[12] Bartolucci D., Montefusco E.: On the shape of blow up solutions to a mean field equation. Nonlinearity19, 611-631 (2006) · Zbl 1153.35015 · doi:10.1088/0951-7715/19/3/005
[13] Bartolucci D., Tarantello G.: Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory. Comm. Math. Phys. 229, 3-47 (2002) · Zbl 1009.58011 · doi:10.1007/s002200200664
[14] Bavaud F.: Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation. Rev. Mod. Phys. 63(1), 129-149 (1991) · doi:10.1103/RevModPhys.63.129
[15] Besicovitch A.S.: Measure of assymmetry of convex curves. J. Lond. Math. Soc. 23, 237-240 (1948) · Zbl 0035.38402 · doi:10.1112/jlms/s1-23.3.237
[16] Brezis H., Li Y.Y., Shafrir I.: A sup+inf inequality for some nonlinear elliptic equations invoving exponential nonlinearity. J. Func. Anal. 115, 344-358 (1993) · Zbl 0794.35048 · doi:10.1006/jfan.1993.1094
[17] Brezis, H., Merle, F.: Uniform estimates and blow-up behaviour for solutions of \[{-\Delta u = V(x)e^u}\]-Δu=V(x)eu in two dimensions. Comm. PDE16(8,9), 1223-1253 (1991) · Zbl 0746.35006
[18] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M.: A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description. Comm. Math. Phys. 143, 501-525 (1992) · Zbl 0745.76001 · doi:10.1007/BF02099262
[19] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M.: A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description. II. Comm. Math. Phys. 174, 229-260 (1995) · Zbl 0840.76002 · doi:10.1007/BF02099602
[20] Chang, S.Y.A., Chen, C.C., Lin, C.S.: Extremal functions for a mean field equation in two dimension. In: “<Emphasis Type=”Italic“>Lecture on Partial Differential Equations”. pp. 61-93. New Stud. Adv. Math. vol. 2. International Press, Somerville (2003) · Zbl 1071.35040
[21] Chang S.Y.A., Yang P.C.: Conformal deformation of metrics on S2. J. Diff. Geom. 27, 259-296 (1988) · Zbl 0649.53022
[22] Chanillo S., Kiessling M.H.K.: Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry. Comm. Math. Phys. 160, 217-238 (1994) · Zbl 0821.35044 · doi:10.1007/BF02103274
[23] Chen W.X., Li C.: Prescribing Gaussian curvature on surfaces with conical singularities. J. Geom. Anal. 1, 359-372 (1991) · Zbl 0739.58012 · doi:10.1007/BF02921311
[24] Chen W.X., Li C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615-622 (1991) · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[25] Chen C.C., Lin C.S.: On the symmetry of blowup solutions to a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire18(3), 271-296 (2001) · Zbl 0995.35004 · doi:10.1016/S0294-1449(00)00060-3
[26] Chen C.C., Lin C.S.: Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Comm. Pure Appl. Math. 55, 728-771 (2002) · Zbl 1040.53046 · doi:10.1002/cpa.3014
[27] Chen C.C., Lin C.S.: Topological degree for a mean field equation on Riemann surface. Comm. Pure Appl. Math. 56, 1667-1727 (2003) · Zbl 1032.58010 · doi:10.1002/cpa.10107
[28] Chen C.C., Lin C.S.: Mean field equations of liouville type with singular data: sharper estimates. Discr. Cont. Dyn. Syst. 28(3), 1237-1272 (2010) · Zbl 1211.35263 · doi:10.3934/dcds.2010.28.1237
[29] Chipot M., Shafrir I., Wolansky G.: On the solutions of Liouville Systems. J. Diff. Equ. 140, 59-105 (1997) · Zbl 0902.35039 · doi:10.1006/jdeq.1997.3316
[30] Choe K.: Existence and uniqueness results for a class of elliptic equations with exponential nonlinearity. Proc. Roy. Soc. Edinburgh135A, 959-983 (2005) · Zbl 1185.35078 · doi:10.1017/S0308210500004224
[31] Clément P., Sweers G.: Getting a solution between sub- and supersolutions without monotone iteration. Rend. Istit. Mat. Univ. Trieste19, 189-194 (1987) · Zbl 0687.35037
[32] Crandall M.G., Rabinowitz P.H.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rat. Mech. Anal. 58, 207-218 (1975) · Zbl 0309.35057 · doi:10.1007/BF00280741
[33] De Marchis F.: Multiplicity result for a scalar field equation on compact surfaces. Comm. Part. Diff. Equ. 33(10-12), 2208-2224 (2008) · Zbl 1165.35020 · doi:10.1080/03605300802523446
[34] De Marchis F.: Generic multiplicity for a scalar field equation on compact surfaces. J. Funct. Anal. 259, 2165-2192 (2010) · Zbl 1211.58011 · doi:10.1016/j.jfa.2010.07.003
[35] Ding W., Jost J., Li J., Wang G.: Existence results for mean field equations. Ann. Inst. H. Poincaré Anal. Non Linéaire16, 653-666 (1999) · Zbl 0937.35055 · doi:10.1016/S0294-1449(99)80031-6
[36] Djadli Z.: Existence result for the mean field problem on Riemann surfaces of all genuses. Comm. Contemp. Math. 10(2), 205-220 (2008) · Zbl 1151.53035 · doi:10.1142/S0219199708002776
[37] Esposito P., Grossi M., Pistoia A.: On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire22(2), 227-257 (2005) · Zbl 1129.35376 · doi:10.1016/j.anihpc.2004.12.001
[38] Eyink, G.L., Spohn, H.: Negative temperature states and large-scale, long-lived vortices in two dimensional turbulence. J. Stat. Phys. 70(3/4), 87-135 (1993) · Zbl 0945.82568
[39] Eyink G.L., Sreenivasan K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 833-886 (2006) · Zbl 1205.01032 · doi:10.1103/RevModPhys.78.87
[40] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998) · Zbl 0361.35003
[41] Grossi M., Takahashi F.: Nonexistence of multi-bubble solutions to some elliptic equations on convex domains. J. Funct. Anal. 259(4), 904-917 (2010) · Zbl 1195.35147 · doi:10.1016/j.jfa.2010.03.008
[42] Gustafsson B.: On the convexity of a solution of Liouville’s equation equation. Duke Math. J. 60(2), 303-311 (1990) · Zbl 0719.35002 · doi:10.1215/S0012-7094-90-06012-0
[43] John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 6oth Birthday, January 8, 1948, pp. 187-204. Interscience Publishers Inc., New York (1948) · Zbl 0034.10503
[44] Kazdan J.L., Warner F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14-74 (1974) · Zbl 0273.53034 · doi:10.2307/1971012
[45] Kowalczyk M., Musso M., del Pino M.: Singular limits in Liouville-type equations. Calc. Var. PDE24(1), 47-81 (2005) · Zbl 1088.35067 · doi:10.1007/s00526-004-0314-5
[46] Kiessling M.K.H.: Statistical mechanics of classical particles with logaritmic interaction. Comm. Pure Appl. Math. 46, 27-56 (1993) · Zbl 0811.76002 · doi:10.1002/cpa.3160460103
[47] Kiessling M.K.H., Lebowitz J.L.: The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys. 42, 43-56 (1997) · Zbl 0902.76021 · doi:10.1023/A:1007370621385
[48] Lassak, M.: private communication · Zbl 1185.35288
[49] Li Y.Y.: Harnack type inequality: the method of moving planes. Comm. Math. Phys. 200, 421-444 (1999) · Zbl 0928.35057 · doi:10.1007/s002200050536
[50] Li, Y.Y., Shafrir, I.: Blow-up analysis for Solutions of \[{-\Delta u = V(x)e^u}\]-Δu=V(x)eu in dimension two. Ind. Univ. Math. J. 43(4), 1255-1270 (1994) · Zbl 0842.35011
[51] Lin C.S.: Uniqueness of solutions to the mean field equation for the spherical Onsager Vortex. Arch. Rat. Mech. Anal. 153, 153-176 (2000) · Zbl 0968.35045 · doi:10.1007/s002050000085
[52] Lin C.S., Lucia M.: Uniqueness of solutions for a mean field equation on torus. J. Diff. Equ. 229(1), 172-185 (2006) · Zbl 1105.58005 · doi:10.1016/j.jde.2005.11.003
[53] Lin C.S., Wang C.L.: Elliptic functions, Green functions and the mean field equations on tori. Ann. Math. 172(2), 911-954 (2010) · Zbl 1207.35011 · doi:10.4007/annals.2010.172.911
[54] Liouville, J.: Sur L’ Équation aux Différence Partielles \[{\frac{d^2\log{\lambda}}{du dv} \pm \frac{\lambda}{2 a^2}=0}\] d2logλdudv±λ2a2=0. C.R. Acad. Sci. Paris36, 71-72 (1853) · Zbl 0902.35039
[55] Malchiodi A.: Topological methods for an elliptic equation with exponential nonlinearities. Discr. Cont. Dyn. Syst. 21, 277-294 (2008) · Zbl 1144.35372 · doi:10.3934/dcds.2008.21.277
[56] Malchiodi A.: Morse theory and a scalar field equation on compact surfaces. Adv. Diff. Equ. 13, 1109-1129 (2008) · Zbl 1175.53052
[57] Malchiodi A., Ruiz D.: New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces. G.A.F.A. 21(5), 1196-1217 (2011) · Zbl 1235.35094
[58] Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids. Appl. Math. Sci. 96 (1994) · Zbl 0789.76002
[59] Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1091 (1971) · Zbl 0213.13001 · doi:10.1512/iumj.1971.20.20101
[60] Newton, P.K.: The N-vortex problem: analytical techniques. Appl. Math. Sci. 145 (2001) · Zbl 0981.76002
[61] Nolasco M., Tarantello G.: On a sharp Sobolev-type Inequality on two-dimensional compact manifold. Arch. Rat. Mech. Anal. 145, 161-195 (1998) · Zbl 0980.46022 · doi:10.1007/s002050050127
[62] Ohtsuka H., Suzuki T.: Palais-Smale sequence relative to the Trudinger-Moser inequality. Calc. Var. PDE17, 235-255 (2003) · Zbl 1028.58016
[63] Onsager L.: Statistical hydrodynamics. Nuovo Cimento6(2), 279-287 (1949) · doi:10.1007/BF02780991
[64] Plum M., Wieners C.: New solutions of the Gelfand problem. J. Math. Anal. Appl. 269, 588-606 (2002) · Zbl 1003.65131 · doi:10.1016/S0022-247X(02)00038-0
[65] Prajapat J., Tarantello G.: On a class of elliptic problems in \[{\mathbb{R}^2}\] R2 : symmetry and uniqueness results. Proc. Roy. Soc. Edinburgh131A, 967-985 (2001) · Zbl 1009.35018 · doi:10.1017/S0308210500001219
[66] Spruck J., Yang Y.: On multivortices in the electroweak theory i: existence of periodic solutions. Comm. Math. Phys. 144, 1-16 (1992) · Zbl 0748.53059 · doi:10.1007/BF02099188
[67] Struwe M., Tarantello G.: On multivortex solutions in Chern-Simons gauge theory. Boll. Unione Mat. Ital. (B) Artic. Ric. Mat. 8(1), 109-121 (1998) · Zbl 0912.58046
[68] Suzuki, T., Nagasaki, K.: On the nonlinear eigenvalue problem \[{\Delta u + \lambda e^u = 0}\] Δu+λeu=0. Trans. Am. Math. Soc. 309(2), 591-608 (1988) · Zbl 0711.35043
[69] Suzuki T.: Global analysis for a two-dimensional elliptic eiqenvalue problem with the exponential nonlinearly. Ann. Inst. H. Poincaré Anal. Non Linéaire9(4), 367-398 (1992) · Zbl 0785.35045
[70] Suzuki, T.: Semilinear Elliptic Equations. Mathematics Science and Application, vol. 3. GAKUTO Int. Ser., Gakkotosho (1994) · Zbl 0852.35043
[71] Suzuki, T.: Free Energy and Self-Interacting Particles. PNLDE, vol. 62. Birkhauser, Boston (2005) · Zbl 1082.35006
[72] Tarantello G.: Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys. 37, 3769-3796 (1996) · Zbl 0863.58081 · doi:10.1063/1.531601
[73] Tarantello, G.: Analytical aspects of Liouville type equations with singular sources. Handbook Diff. Eqs., North Holland, Amsterdam, Stationary partial differential equations, vol. I, pp. 491-592 (2004) · Zbl 1129.35408
[74] Tarantello, G.: Self-Dual Gauge Field Vortices: An Analytical Approach. PNLDE 72, Birkhäuser Boston, Inc., Boston, MA, 2007 · Zbl 1177.58011
[75] Troyanov M.: Prescribing curvature on compact surfaces with conical singularities. Trans. Am. Math. Soc. 324, 793-821 (1991) · Zbl 0724.53023 · doi:10.1090/S0002-9947-1991-1005085-9
[76] Villarino, M.B.: A note on the accuracy of the Ramanujan’s approximative formula for the perimeter of an ellipse. JIPAM. J. Inequal. Pure Math. 7, Article 21, 10 pp. (2006) · Zbl 1182.33032
[77] Wolansky G.: On steady distributions of self-attracting clusters under friction and fluctuations. Arch. Ration. Mech. Anal. 119, 355-391 (1992) · Zbl 0774.76069 · doi:10.1007/BF01837114
[78] Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer Monographs in Mathematics. Springer, New York (2001) · Zbl 0982.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.