×

I-scal: Multidimensional scaling of interval dissimilarities. (English) Zbl 1157.62450

Summary: Multidimensional scaling aims at reconstructing dissimilarities between pairs of objects by distances in a low-dimensional space. However, in some cases the dissimilarity itself is unknown, but the range of the dissimilarity is given. Such fuzzy data give rise to a data matrix in which each dissimilarity is an interval of values. These interval dissimilarities are modelled by the ranges of the distances defined as the minimum and maximum distance between two rectangles representing the objects. Previously, two approaches for such data have been proposed and one of them is investigated. A new algorithm called I-Scal is developed. Because I-Scal is based on iterative majorization it has the advantage that each iteration is guaranteed to improve the solution until no improvement is possible. In addition, a rational start configuration is proposed that is helpful in locating a good quality local minima. In a simulation study, the quality of this algorithm is investigated and I-Scal is compared with one previously proposed algorithm. Finally, I-Scal is applied on an empirical example of dissimilarity intervals of sounds.

MSC:

62H99 Multivariate analysis
91C15 One- and multidimensional scaling in the social and behavioral sciences
62H30 Classification and discrimination; cluster analysis (statistical aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bock, H.-H.; Diday, E., Analysis of Symbolic Data (2000), Springer: Springer Berlin
[2] Borg, I.; Groenen, P. J.F., Modern Multidimensional Scaling: Theory and Applications (2005), Springer: Springer New York · Zbl 1085.62079
[3] Carroll, J.D., 1972. Individual differences and multidimensional scaling. In: Theory and Applications in the Behavioral Sciences, vol. I, Theory. Seminar Press, New York.; Carroll, J.D., 1972. Individual differences and multidimensional scaling. In: Theory and Applications in the Behavioral Sciences, vol. I, Theory. Seminar Press, New York.
[4] Carroll, J. D.; Winsberg, S., Fitting an extended INDSCAL model to 3-way proximity data, J. Classification, 12, 57-71 (1995)
[5] Chouakria, A., Cazes, P., Diday, E., 2000. Symbolic Principal Components Analysis. Springer, Berlin, pp. 200-212.; Chouakria, A., Cazes, P., Diday, E., 2000. Symbolic Principal Components Analysis. Springer, Berlin, pp. 200-212. · Zbl 0977.62063
[6] De Leeuw, J., Block relaxation algorithms in statistics, (Bock, H.-H.; Lenski, W.; Richter, M. M., Information Systems and Data Analysis (1994), Springer: Springer Berlin), 308-324 · Zbl 0829.65144
[7] De Leeuw, J., Heiser, W.J., 1980. Multidimensional scaling with restrictions on the configuration. In: Krishnaiah, P.R. (Ed.), Multivariate Analysis, vol. V. North-Holland Publishing Company, Amsterdam, The Netherlands, pp. 501-522.; De Leeuw, J., Heiser, W.J., 1980. Multidimensional scaling with restrictions on the configuration. In: Krishnaiah, P.R. (Ed.), Multivariate Analysis, vol. V. North-Holland Publishing Company, Amsterdam, The Netherlands, pp. 501-522. · Zbl 0468.62054
[8] Denœux, T.; Masson, M., Multidimensional scaling of interval-valued dissimilarity data, Pattern Recognition Lett., 21, 83-92 (2000)
[9] Gower, J. C., Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, 53, 325-338 (1966) · Zbl 0192.26003
[10] Groenen, P. J.F.; Mathar, R.; Heiser, W. J., The majorization approach to multidimensional scaling for Minkowski distances, J. Classification, 12, 3-19 (1995) · Zbl 0825.92158
[11] Groenen, P. J.F.; DeLeeuw, J.; Mathar, R., Least squares multidimensional scaling with transformed distances, (Gaul, W.; Pfeifer, D., Studies in Classification, Data Analysis, and Knowledge Organization (1996), Springer: Springer Berlin), 177-185 · Zbl 0855.62050
[12] Groenen, P. J.F.; Heiser, W. J.; Meulman, J. J., Global optimization in least-squares multidimensional scaling by distance smoothing, J. Classification, 16, 225-254 (1999) · Zbl 1006.91055
[13] Heiser, W.J., 1995. Convergent Computation by Iterative Majorization: Theory and Applications in Multidimensional Data Analysis. Oxford University Press, Oxford, pp. 157-189.; Heiser, W.J., 1995. Convergent Computation by Iterative Majorization: Theory and Applications in Multidimensional Data Analysis. Oxford University Press, Oxford, pp. 157-189.
[14] Hunter, D. R.; Lange, K., A autorial on MM algorithms, Amer. Statist., 39, 30-37 (2004)
[15] Kiers, H. A.L., Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems, Comput. Statist. Data Anal., 41, 157-170 (2002) · Zbl 1018.65074
[16] Kiers, H. A.L.; Groenen, P. J.F., A monotonically convergent algorithm for orthogonal congruence rotation, Psychometrika, 61, 375-389 (1996) · Zbl 0877.62061
[17] Kruskal, J. B., Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1-27 (1964) · Zbl 0123.36803
[18] Kruskal, J. B., Nonmetric multidimensional scaling: a numerical method, Psychometrika, 29, 115-129 (1964) · Zbl 0123.36804
[19] Masson, M.; Denœux, T., Multidimensional scaling of fuzzy dissimilarity data, Fuzzy Sets and Systems, 128, 339-352 (2002) · Zbl 1003.62056
[20] McAdams, S.; Winsberg, S., Multidimensional scaling of musical timbre constrained by physical parameters, J. Acoust. Soc. Amer., 105, 1273 (1999)
[21] McAdams, S.; Winsberg, S.; Donnadieu, S.; De Soete, G.; Krimphoff, J., Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes, Psychological Res., 58, 177-192 (1995)
[22] Plomp, R., 1970. Timbre as a Multidimensional Attribute of Complex Tones. Sijthoff, Leiden, pp. 397-414 (Chapter 4).; Plomp, R., 1970. Timbre as a Multidimensional Attribute of Complex Tones. Sijthoff, Leiden, pp. 397-414 (Chapter 4).
[23] Rodríguez, O., 2000. Classification et modèles linéaires en analyse des données symboliques. Ph.D. Thesis, Université Paris IX Dauphine, Paris.; Rodríguez, O., 2000. Classification et modèles linéaires en analyse des données symboliques. Ph.D. Thesis, Université Paris IX Dauphine, Paris.
[24] Torgerson, W. S., Theory and Methods of Scaling (1958), Wiley: Wiley New York
[25] Tucker, L.R., 1951. A method for synthesis of factor analysis studies. Personnel Research Section Report 984, Department of the Army, Washington, DC.; Tucker, L.R., 1951. A method for synthesis of factor analysis studies. Personnel Research Section Report 984, Department of the Army, Washington, DC.
[26] Weinberg, S. L.; Menil, V. C., The recovery of structure in linear and ordinal data: INDSCAL versus ALSCAL, Multivariate Behavioral Res., 28, 215-233 (1993)
[27] Winsberg, S.; Carroll, J. D., A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model, Psychometrika, 54, 217-219 (1989)
[28] Winsberg, S.; De Soete, G., A latent class approach to fitting the weighted euclidean model, CLASCAL, Psychometrika, 58, 315-330 (1993)
[29] Winsberg, S.; De Soete, G., Multidimensional scaling with constrained dimensions: CONSCAL, British J. Math. Statist. Psych., 50, 55-72 (1997) · Zbl 0928.91044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.