×

The application of Lagrangian descriptors to 3D vector fields. (English) Zbl 1412.37057

Summary: Since the 1980s, the application of concepts and ideas from dynamical systems theory to analyze phase space structures has provided a fundamental framework to understand long-term evolution of trajectories in many physical systems. In this context, for the study of fluid transport and mixing the development of Lagrangian techniques that can capture the complex and rich dynamics of time-dependent flows has been crucial. Many of these applications have been to atmospheric and oceanic flows in two-dimensional (2D) relevant scenarios. However, the geometrical structures that constitute the phase space structures in time-dependent three-dimensional (3D) flows require further exploration. In this paper we explore the capability of Lagrangian descriptors (LDs), a tool that has been successfully applied to time-dependent 2D vector fields, to reveal phase space geometrical structures in 3D vector fields. In particular, we show how LDs can be used to reveal phase space structures that govern and mediate phase space transport. We especially highlight the identification of normally hyperbolic invariant manifolds (NHIMs) and tori. We do this by applying this methodology to three specific dynamical systems: a 3D extension of the classical linear saddle system, a 3D extension of the classical Duffing system, and a geophysical fluid dynamics f-plane approximation model which is described by analytical wave solutions of the 3D Euler equations. We show that LDs successfully identify and recover the template of invariant manifolds that define the dynamics in phase space for these examples.

MSC:

37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
37D10 Invariant manifold theory for dynamical systems
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aref, H., Stirring by Chaotic Advection, J. Fluid Mech., 1984, vol. 143, pp. 1-21. · Zbl 0559.76085 · doi:10.1017/S0022112084001233
[2] Ottino, J.M., The Kinematics of Mixing: Stretching, Chaos and Transport, Cambridge: Cambridge Univ. Press, 1987. · Zbl 0721.76015
[3] Wiggins, S., The Dynamical Systems Approach to Lagrangian Transport in Oceanic Flows, Annu. Rev. Fluid Mech., 2005, vol. 37, pp. 295-328. · Zbl 1117.76058 · doi:10.1146/annurev.fluid.37.061903.175815
[4] Mancho, A.M., Small, D., and Wiggins, S., A Tutorial on Dynamical Systems Concepts Applied to Lagrangian Transport in Oceanic Flows Defined as Finite Time Data Sets: Theoretical and Computational Issues, Phys. Rep., 2006, vol. 437, nos. 3-4, pp. 55-124. · doi:10.1016/j.physrep.2006.09.005
[5] Prants, S.V., Dynamical Systems Theory Methods for Studying Mixing and Transport in the Ocean, Phys. Scr., 2013, vol. 87, no. 3, 0381115. · doi:10.1088/0031-8949/87/03/038115
[6] Rom-Kedar, V., Leonard, A., and Wiggins, S., An Analytical Study of Transport, Mixing and Chaos in an Unsteady Vortical Flow, J. Fluid Mech., 1990, vol. 214, pp. 347-394. · Zbl 0698.76028
[7] Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Appl. Math. Sci., vol. 105, New York: Springer, 1994. · Zbl 0812.58001
[8] Mezić, I. and Wiggins, S., On the Integrability and Perturbation of Three-Dimensional Fluid Flows with Symmetry, J. Nonlinear Sci., 1994, vol. 4, no. 2, pp. 157-194. · Zbl 0796.76021
[9] Curbelo, J., García-Garrido, V. J., Mechoso, C.R., Mancho, A.M., Wiggins, S., and Niang, C., Insights into the Three-Dimensional Lagrangian Geometry of the Antarctic Polar Vortex, Nonlinear Proc. Geophys., 2017, vol. 24, no. 3, pp. 379-392. · doi:10.5194/npg-24-379-2017
[10] Curbelo, J., Mechoso, C.R., Mancho, A.M., Wiggins, S., Preprint (2018).
[11] Bettencort, J.H., López, Ch., and Hernández-García, E., Oceanic Three-Dimensional Lagrangian Coherent Structures: A Study of a Mesoscale Eddy in the Benguela Upwelling Region, Ocean Model., 2012, vol. 51. 73-83 · doi:10.1016/j.ocemod.2012.04.004
[12] Branicki, M. and Kirwan, A.D., Jr., Stirring: The Eckart Paradigm Revisited, Int. J. Eng. Sci., 2010, vol. 48, no. 11, pp. 1027-1042. · Zbl 1231.86003 · doi:10.1016/j.ijengsci.2010.08.003
[13] Wiggins, S., Coherent Structures and Chaotic Advection in Three Dimensions, J. Fluid Mech., 2010, vol. 654, pp. 1-4. · Zbl 1193.76138 · doi:10.1017/S0022112010002569
[14] Cartwright, J., Feingold, M., and Piro, O., Chaotic Advection in Three-Dimensional Unsteady Incompressible Laminar Flow, J. Fluid Mech., 1996, vol. 316, pp. 259-284. · Zbl 0877.76023 · doi:10.1017/S0022112096000535
[15] Pouransari, Z., Speetjens, M. F.M., and Clercx, H. J. H., Formation of Coherent Structures by Fluid Inertia in Three-Dimensional Laminar Flows, J. Fluid Mech., 2010, vol. 654, pp. 5-34. · Zbl 1193.76137 · doi:10.1017/S0022112010001552
[16] Moharana, N.R., Speetjens, M. F.M., Trieling, R. R., and Clercx, H. J.H., Three-Dimensional Lagrangian Transport Phenomena in Unsteady Laminar Flows Driven by a Rotating Sphere, Phys. Fluids, 2013, vol. 25, no. 9, 093602, 23 pp. · doi:10.1063/1.4819901
[17] Rypina, I. I., Pratt, L. J., Wang, P., Özgökmen, T. M., and Mezić, I., Resonance Phenomena in a Time-Dependent, Three-Dimensional Model of an Idealized Eddy, Chaos, 2015, vol. 25, no. 8, 087401, 20 pp. · Zbl 1374.76237
[18] Branicki, M. and Wiggins, S., An Adaptive Method for Computing Invariant Manifolds in Non-Autonomous, Three-Dimensional Dynamical Systems, Phys. D, 2009, vol. 238, no. 16, pp. 1625-1657. · Zbl 1179.37113
[19] Bettencourt, J.H., López, C., Hernández-García, E., Montes, I., Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V., Boundaries of the Peruvian Oxygen Minimum Zone Shaped by Coherent Mesoscale Dynamics, Nature Geosci., 2015, vol. 8, no. 12, pp. 937-940. · doi:10.1038/ngeo2570
[20] Rutherford, B. and Dangelmayr, G., A Three-Dimensional Lagrangian Hurricane Eyewall Computation, Q. J. Royal Meteorol. Soc., 2010, vol. 136, no. 653, pp. 1931-1944. · doi:10.1002/qj.703
[21] du Toit, Ph. C. and Marsden, J.E., Horseshoes in Hurricanes, J. Fixed Point Theory Appl., 2010, vol. 7, no. 2, pp. 351-384. · Zbl 1205.37032 · doi:10.1007/s11784-010-0028-6
[22] Lekien, F. and Ross, Sh. D., The Computation of Finite-Time Lyapunov Exponents on Unstructured Meshes and for Non-Euclidean Manifolds, Chaos, 2010, vol. 20, no. 1, 017505, 20 pp. · Zbl 1311.76109 · doi:10.1063/1.3278516
[23] Rutherford, B., Dangelmayr, G., and Montgomery, M.T., Lagrangian Coherent Structures in Tropical Cyclone Intensification, Atmos. Chem. Phys., 2012, vol. 12, no. 12, pp. 5483-5507. · doi:10.5194/acp-12-5483-2012
[24] Mendoza, C. and Mancho, A.M., Hidden Geometry of Ocean Flows, Phys. Rev. Lett., 2010, vol. 105, no. 3, 038501, 4 pp. · doi:10.1103/PhysRevLett.105.038501
[25] Mendoza, C. and Mancho, A.M., Review Article: “The Lagrangian Description of Aperiodic Flows: A Case Study of the Kuroshio Current”, Nonlinear Proc. Geophys., 2012, vol. 19, no. 4, pp. 449-472. · doi:10.5194/npg-19-449-2012
[26] Wiggins, S. and Mancho, A.M., Barriers to Transport in Aperiodically Time-Dependent Two-Dimensional Velocity Fields: Nekhoroshev’s Theorem and “Nearly Invariant” Tori, Nonlinear Proc. Geophys., 2014, vol. 21, no. 1, pp. 165-185. · doi:10.5194/npg-21-165-2014
[27] García-Garrido, V. J., Mancho, A.M., Wiggins, S., and Mendoza, C., A Dynamical Systems Approach to the Surface Search for Debris Associated with the Disappearance of Flight MH370, Nonlinear Proc. Geophys., 2015, vol. 22, no. 6, pp. 701-712. · doi:10.5194/npg-22-701-2015
[28] García-Garrido, V. J., Ramos, A., Mancho, A.M., Coca, J., and Wiggins, S., A Dynamical Systems Perspective for a Real-Time Response to a Marine Oil Spill, Mar. Pollut. Bull., 2016, vol. 112, nos. 1-2, pp. 201-210. · doi:10.1016/j.marpolbul.2016.08.018
[29] Ramos, A.G., García-Garrido, V. J., Mancho, A.M., Wiggins, S., Coca, J., Glenn, S., Schofield, O., Kohut, J., Aragon, D., Kerfoot, J., Haskins, T., Miles, T., Haldeman, C., Strandskov, N., Allsup, B., Jones, C., and Shapiro, J., Lagrangian Coherent Structure Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions, Sci. Rep., 2018, vol. 8, 4575, 9 pp. · doi:10.1038/s41598-018-23028-8
[30] Junginger, A. and Hernandez, R., Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors, J. Phys. Chem. B, 2016, vol. 120, no. 8, pp. 1720-1725. · doi:10.1021/acs.jpcb.5b09003
[31] Craven, G.T. and Hernandez, R., Deconstructing Field-Induced Ketene Isomerization through Lagrangian Descriptors, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 5, pp. 4008-4018. · doi:10.1039/C5CP06624G
[32] Craven, G.T., Junginger, A., and Hernandez, R., Lagrangian Descriptors of Driven Chemical Reaction Manifolds, Phys. Rev. E, 2017, vol. 96, no. 2, 022222, 12 pp. · doi:10.1103/PhysRevE.96.022222
[33] Junginger, A., Craven, G. T., Bartsch, Th., Revuelta, F., Borondo, F., Benito, R.M., Hernandez, R., Transition State Geometry of Driven Chemical Reactions on Time-Dependent Double-Well Potentials, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 44, pp. 30270-30281. · doi:10.1039/C6CP02519F
[34] Junginger, A., Duvenbeck, L., Feldmaier, M., Main, J., Wunner, G., and Hernandez, R., Chemical Dynamics between Wells across a Time-Dependent Barrier: Self-Similarity in the Lagrangian Descriptor and Reactive Basins, J. Chem. Phys., 2017, vol. 147, no. 6, 064101, 8 pp. · doi:10.1063/1.4997379
[35] Feldmaier, M., Junginger, A., Main, J., Wunner, G., and Hernandez, R., Obtaining Time-Dependent Multi-Dimensional Dividing Surfaces Using Lagrangian Descriptors, Chem. Phys. Lett., 2017, vol. 687, pp. 194-199. · doi:10.1016/j.cplett.2017.09.008
[36] Revuelta, F., Craven, G.T., Bartsch, Th., Borondo, F., Benito, R.M., and Hernandez, R., Transition State Theory for Activated Systems with Driven Anharmonic Barriers, J. Chem. Phys., 2017, vol. 147, no. 7, 074104. · doi:10.1063/1.4997571
[37] Demian, A. S. and Wiggins, S., Detection of Periodic Orbits in Hamiltonian Systems Using Lagrangian Descriptors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 14, 1750225, 9 pp. · Zbl 1386.37061 · doi:10.1142/S021812741750225X
[38] Jiménez Madrid, J.A. and Mancho, A.M., Distinguished Trajectories in Time Dependent Vector Fields, Chaos, 2009, vol. 19, no. 1, 013111, 18 pp. · doi:10.1063/1.3056050
[39] Mancho, A.M., Wiggins, S., Curbelo, J., and Mendoza, C., Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems, Commun. Nonlinear Sci. Numer. Simul., 2013, vol. 18, no. 12, pp. 3530-3557. · Zbl 1344.37031 · doi:10.1016/j.cnsns.2013.05.002
[40] Mezić, I. and Wiggins, S., A Method for Visualization of Invariant Sets of Dynamical Systems Based on the Ergodic Partition, Chaos, 1999, vol. 9, no. 1, pp. 213-218. · Zbl 0987.37080 · doi:10.1063/1.166399
[41] Lopesino, C., Balibrea-Iniesta, F., García-Garrido, V. J., Wiggins, S., and Mancho, A.M., A Theoretical Framework for Lagrangian Descriptors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 1, 1730001, 25 pp. · Zbl 1358.34048 · doi:10.1142/S0218127417300014
[42] Curbelo, J., Mechoso, C.R., Mancho, A.M., Wiggins, S., Preprint (2018).
[43] Lopesino, C., Balibrea, F., Wiggins, S., and Mancho, A.M., LagrangianDescriptors for Two Dimensional, Area Preserving, Autonomous and Nonautonomous Maps, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 27, nos. 1-3, pp. 40-51. · Zbl 1457.37037 · doi:10.1016/j.cnsns.2015.02.022
[44] Ide, K., Small, D., and Wiggins, S., Distinguished Hyperbolic Trajectories in Time-Dependent Fluid Flows: Analytical and Computational Approach for Velocity Fields Defined As Data Sets, Nonlinear Proc. Geophys., 2002, vol. 9, nos. 3-4, pp. 237-263. · doi:10.5194/npg-9-237-2002
[45] Wiggins, S. and Holmes, Ph., Periodic Orbits in Slowly Varying Oscillators, SIAM J. Math. Anal., 1987, vol. 18, no. 3, pp. 592-611. · Zbl 0619.34041 · doi:10.1137/0518046
[46] Wiggins, S. and Holmes, Ph., Homoclinic Orbits in Slowly Varying Oscillators, SIAM J. Math. Anal., 1987, vol. 18, no. 3, pp. 612-629. · Zbl 0622.34041 · doi:10.1137/0518047
[47] Wiggins, S. and Holmes, Ph., Errata: “Homoclinic Orbits in Slowly Varying Oscillators” [SIAM J. Math. Anal., 1987, vol. 18, no. 3, pp. 612-629], SIAM J. Math. Anal., 1988, vol. 19, no. 5, pp. 1254-1255. · Zbl 0649.34043 · doi:10.1137/0519090
[48] Malhotra, N., Mezić, I., and Wiggins, S., Patchiness: A New Diagnostic for Lagrangian Trajectory Analysis in Time-Dependent Fluid Flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1998, vol. 8, no. 6, pp. 1053-1093. · Zbl 0962.76537 · doi:10.1142/S0218127498000875
[49] Poje, A.C., Haller, G., and Mezić, I., The Geometry and Statistics of Mixing in Aperiodic Flows, Phys. Fluids, 1999, vol. 11, no. 10, pp. 2963-2968. · Zbl 1149.76515 · doi:10.1063/1.870155
[50] Mezić, I. and Wiggins, S., A Method for Visualization of Invariant Sets of Dynamical Systems Based on the Ergodic Partition, Chaos, 1999, vol. 9, no. 1, pp. 213-218. · Zbl 0987.37080 · doi:10.1063/1.166399
[51] Y. Susuki, I. Mezić, Ergodic Partition of Phase Space in Continuous Dynamical Systems, in Proc. of the 48th IEEE Conference on Decision and Control, combined with the 28th Chinese Control Conference (Dec 16-18, 2009, Shanghai, China), pp. 7497-7502.
[52] Chang, H., Huntley, H. S., Kirwan, A.D., Jr., Lipphardt, B. L., Jr., and Sulman, M. H. M., Transport Structures in a 3D Periodic Flow, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 61, pp. 84-103. · Zbl 1470.76027 · doi:10.1016/j.cnsns.2018.01.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.