×

Tradeoffs in linear time-varying systems: An analogue of Bode’s sensitivity integral. (English) Zbl 1136.93342

Summary: A new time-domain interpretation of Bode’s integral is presented. This allows for a generalization to the class of time-varying systems which possess an exponential dichotomy. It is shown that the sensitivity function is constrained, on average, by the Lyapunov exponents of the open-loop system which take the place of the magnitude of the open-loop poles.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, L., Random dynamical systems (1998), Springer: Springer Berlin
[2] Arveson, W., Interpolation problems in nest algebras, Journal of Functional Analysis, 20, 3, 208-233 (1975) · Zbl 0309.46053
[3] Ben-Artzi, A.; Gohberg, I., Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations Operator Theory, 14, 5, 613-677 (1991) · Zbl 0751.47014
[4] Ben-Artzi, A.; Gohberg, I., Inertia theorems for operator pencils and applications, Integral Equations Operator Theory, 21, 3, 270-318 (1995) · Zbl 0824.47010
[5] Ben-Artzi, A.; Gohberg, I.; Kaashoek, M. A., A time-varying generalization of the canonical factorization theorem for Toeplitz operators, Indagations Mathematicae (N.S.), 4, 4, 385-405 (1993) · Zbl 0806.47024
[6] Bode, H. W., Network analysis and feedback amplifier design (1945), D. Van Nostrand: D. Van Nostrand Princeton, NJ
[7] Chen, J., Sensitivity integral relations and design trade-offs in linear multivariable feedback systems, IEEE Transactions on Automatic Control, 40, 10, 1700-1716 (1995) · Zbl 0849.93020
[8] Chen, J., Multivariable gain-phase and sensitivity integral relations and design tradeoffs, IEEE Transactions on Automatic Control, 43, 3, 373-385 (1998) · Zbl 0907.93024
[9] Chen, J.; Nett, C. N., Sensitivity integrals for multivariable discrete-time systems, Automatica, 31, 8, 1113-1124 (1995) · Zbl 0831.93018
[10] Coffman, C. V.; Schäffer, J. J., Dichotomies for linear difference equations, Mathematische Annalen, 172, 139-166 (1967) · Zbl 0189.40303
[11] Dewilde, P.; Van Der Veen, A.-J., Time-varying systems and computations (1998), Kluwer: Kluwer Boston, MA · Zbl 0937.93002
[12] Dullerud, G. E.; Lall, S., A new approach for analysis and synthesis of time-varying systems, IEEE Transactions on Automatic Control, 44, 8, 1486-1497 (1999) · Zbl 1136.93321
[13] Freudenberg, J. S.; Looze, D. P., Right half plane poles and zeros and design tradeoffs in feedback systems, IEEE Transactions on Automatic Control, 30, 6, 555-565 (1985) · Zbl 0562.93022
[14] Glover, K.; Doyle, J. C., State-space formulae for all stabilizing controllers that satisfy an \(H_∞\)-norm bound and relations to risk sensitivity, Systems Control Letters, 11, 3, 167-172 (1988) · Zbl 0671.93029
[15] Gohberg, I.; Kaashoek, M. A.; van Schagen, F., Szegő-Kac-Achiezer formulas in terms of realizations of the symbol, Journal of Functional Analysis, 74, 1, 24-51 (1987) · Zbl 0621.47028
[16] Halanay, A.; Ionescu, V., Time-varying discrete linear systems (1994), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0804.93036
[17] Halmos, P. R., A Hilbert space problem book (1967), D. Van Nostrand Co: D. Van Nostrand Co Princeton · Zbl 0144.38704
[18] Iglesias, P. A., On the Riccati difference equation of optimal control, Linear and Multilinear Algebra, 46, 4, 313-326 (1999) · Zbl 0932.93021
[19] Iglesias, P. A. (2001). A time-varying analogue of Jensen’s formula. Integral Equations Operator Theory; Iglesias, P. A. (2001). A time-varying analogue of Jensen’s formula. Integral Equations Operator Theory · Zbl 1009.93014
[20] Iglesias, P. A.; Peters, M. A., On the induced norms of discrete-time and hybrid time-varying systems, International Journal of Robust Nonlinear Control, 7, 9, 811-833 (1997) · Zbl 0886.93039
[21] Kamen, E. W.; Khargonekar, P. P.; Poolla, K. R., A transfer-function approach to linear time-varying discrete-time systems, SIAM Journal on Control and Optimization, 23, 4, 550-565 (1985) · Zbl 0626.93039
[22] Kenney, C. S.; Laub, A. J., A Schur-Fréchet algorithm for computing the logarithm and exponential of a matrix, SIAM Journal of Matrix Analysis and Applications, 19, 3, 640-663 (1998) · Zbl 0913.65036
[23] Middleton, R. H., Trade-offs in linear control system design, Automatica, 27, 2, 281-292 (1991) · Zbl 0753.93024
[24] Mustafa, D.; Glover, K., Minimum entropy \(H_∞\) control (1990), Springer: Springer Berlin · Zbl 0701.93027
[25] Papoulis, A., Probability, random variables, and stochastic processes (1984), McGraw-Hill: McGraw-Hill New York · Zbl 0191.46704
[26] Peters, M. A.; Iglesias, P. A., Minimum entropy control for discrete-time time-varying systems, Automatica Journal of IFAC, 33, 4, 591-605 (1997) · Zbl 0876.93030
[27] Peters, M. A.; Iglesias, P. A., The relationship between minimum entropy control and risk-sensitive control for time-varying systems, IEEE Transactions and Automatic Control, 44, 5, 1065-1069 (1999) · Zbl 0955.93060
[28] Shields, A. L. (1974). Weighted shift operators and analytic function theory. In C. Pearcy (Ed.), Topics in operator theory; Shields, A. L. (1974). Weighted shift operators and analytic function theory. In C. Pearcy (Ed.), Topics in operator theory · Zbl 0303.47021
[29] Sung, H.-K.; Hara, S., Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems, International Journal of Control, 48, 6, 2429-2439 (1988) · Zbl 0656.93025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.