×

Topological conjugacy of linear endomorphisms of the 2-torus. (English) Zbl 0947.37027

Summary: We describe two complete sets of numerical invariants of topological conjugacy for linear endomorphisms of the two-dimensional torus, i.e., continuous maps from the torus to itself which are covered by linear maps of the plane. The trace and determinant are part of both complete sets, and two candidates are proposed for a third (and last) invariant which, in both cases, can be understood from the topological point of view. One of our invariants is in fact the ideal class of the Latimer-MacDuffee-Taussky theory, reformulated in more elementary terms and interpreted as describing some topology. Merely, one has to look at how closed curves on the torus intersect their image under the endomorphism. Part of the intersection information (the intersection number counted with multiplicity) can be captured by a binary quadratic form associated to the map, so that we can use the classical theories initiated by Lagrange and Gauss. To go beyond the intersection number, and shortcut the classification theory for quadratic forms, we use the rotation number of Poincaré.

MSC:

37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37E45 Rotation numbers and vectors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. L. Adler and R. Palais, Homeomorphic conjugacy of automorphisms on the torus, Proc. Amer. Math. Soc. 16 (1965), 1222 – 1225. · Zbl 0229.22013
[2] J. Bernoulli, Recueil pour les Astronomes (Berlin) 1 (1772), 255-284.
[3] Mike Boyle and David Handelman, Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), no. 1, 121 – 149. · Zbl 0766.15024
[4] Robert F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Co., Glenview, Ill.-London, 1971. · Zbl 0216.19601
[5] Duncan A. Buell, Binary quadratic forms, Springer-Verlag, New York, 1989. Classical theory and modern computations. · Zbl 0698.10013
[6] Harvey Cohn, A classical invitation to algebraic numbers and class fields, Springer-Verlag, New York-Heidelberg, 1978. With two appendices by Olga Taussky: ”Artin’s 1932 Göttingen lectures on class field theory” and ”Connections between algebraic number theory and integral matrices”; Universitext. · Zbl 0395.12001
[7] Joachim Cuntz and Wolfgang Krieger, Topological Markov chains with dicyclic dimension groups, J. Reine Angew. Math. 320 (1980), 44 – 51. · Zbl 0451.54034 · doi:10.1515/crll.1980.320.44
[8] H. Davenport, The higher arithmetic, 6th ed., Cambridge University Press, Cambridge, 1992. An introduction to the theory of numbers. · Zbl 0751.11001
[9] R. Dedekind, Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunktionen, Journ. f. reine u. angew. Mathem. 1877, Mathematische Werke I (New York), Chelsea, 1969, pp. 174-201.
[10] Edward G. Effros and Chao Liang Shen, Approximately finite \?*-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), no. 2, 191 – 204. · Zbl 0457.46046 · doi:10.1512/iumj.1980.29.29013
[11] E. Galois, Démonstration d’un théorème sur les fractions continues périodiques, Annales de Math. 1829, Œvres Mathématiques d’Évariste Galois, 2nd edition (Paris), Gauthiers-Villars, 1951, pp. 1-8.
[12] Carl Friedrich Gauss, Disquisitiones arithmeticae, Translated into English by Arthur A. Clarke, S. J, Yale University Press, New Haven, Conn.-London, 1966. · Zbl 0136.32301
[13] John R. Silvester, A matrix method for solving linear congruences, Math. Mag. 53 (1980), no. 2, 90 – 92. · Zbl 0441.10002 · doi:10.2307/2689954
[14] G. Humbert, Sur les fractions continues ordinaires et les formes quadratiques binaires indéfinies, J. Math. Pure Appl. 2 (1916), 104-154. · JFM 46.0272.03
[15] S. Katok, Coding of closed geodesics after Gauss and Morse, To appear in Geometriae Dedicata. · Zbl 0884.20030
[16] Y. Katznelson and D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 643 – 680. · Zbl 0819.58033 · doi:10.1017/S0143385700005277
[17] Felix Klein, Vorlesungen über die Theorie der elliptischen Modulfunktionen. Band I: Grundlegung der Theorie, Ausgearbeitet und vervollständigt von Robert Fricke. Nachdruck der ersten Auflage. Bibliotheca Mathematica Teubneriana, Band 10, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1966 (German). Felix Klein, Vorlesungen über die Theorie der elliptischen Modulfunktionen. Band II: Fortbildung und Anwendung der Theorie, Ausgearbeitet und vervollständigt von Robert Fricke. Nachdruck der ersten Auflage. Bibliotheca Mathematica Teubneriana, Band 11, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1966 (German).
[18] J. L. Lagrange, Additions au mémoire sur la résolution des équations numériques, Nouveaux Memoires de l’Acad. Berlin, 1770, Œvres, volume 2 (Paris), Gauthiers-Villars, 1868, pp. 603-615.
[19] -, Recherches d’arithmétique, Nouveaux Mémoires de l’Acad. Berlin, 1773, Œvres, volume 3 (Paris), Gauthiers-Villars, 1869, pp. 695-758.
[20] -, Recherches d’arithmétique, Nouveaux Mémoires de l’Acad. Berlin, 1775, Œvres, volume 3 (Paris), Gauthiers-Villars, 1869, pp. 759-795.
[21] -, Additions aux Elements d’Algèbre d’Euler: Analyse Indéterminée. St. Petersburg, 1798, Œvres, volume 7 (Paris), Gauthiers-Villars, 1877, pp. 5-180.
[22] C. G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. Mathematics 34 (1933), 313-316. · Zbl 0006.29002
[23] G. Lejeune-Dirichlet, Simplification de la théorie des formes binaires du second degré à déterminant positif, J. de Math. 1857, Mathematische Werke II (New York), Chelsea, 1969, pp. 159-181.
[24] W. J. LeVeque, Topics in number theory, vol. 2, Addison-Wesley, Reading, Mass., 1956. · Zbl 0070.03804
[25] G. B. Mathews, Theory of numbers, 2nd ed, Chelsea Publishing Co., New York, 1961.
[26] R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1995. CMP 96:11 · Zbl 0858.11001
[27] H. Poincaré, Sur les courbes définies pas des équations différentielles, J. Math Pures et Appl. \(4^{\mbox {\`{e}me}}\) série 1 1885, Œvres Complètes, t. 1 (Paris), Gauthier-Villars, Paris, 1951, pp. 90-158.
[28] J.-A. Serret, Développements sur une classe d’équations, J. de Math. 15 (1850), 152-168.
[29] H. J. S. Smith, Mémoire sur les équations modulaires, Atti ar Accad. Lincei 1877, Collected Papers, volume 2 (New York), Chelsea, 1965, pp. 224-241.
[30] -, Report on the theory of numbers, Part III, Report of the British Association 1861, Collected Papers, volume 1 (New York), Chelsea, 1965, pp. 163-228.
[31] O. Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300-302. · Zbl 0045.15404
[32] Harvey Cohn, A classical invitation to algebraic numbers and class fields, Springer-Verlag, New York-Heidelberg, 1978. With two appendices by Olga Taussky: ”Artin’s 1932 Göttingen lectures on class field theory” and ”Connections between algebraic number theory and integral matrices”; Universitext. · Zbl 0395.12001
[33] R. F. Williams, The ”\?\?” maps of Smale and structural stability, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 329 – 334.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.