On functors between categories of modules over trusses. (English) Zbl 1523.16054

A heap is a set \(H\) together with an associative ternary operation \([-,-,-]:H\times H\times H \to H\), satisfying the Mal’cev identities: \[ [[a, b, c], d, e] = [a, b, [c, d, e]]\ \ \ \text{and}\ \ \ [a, b, b] = a = [b, b, a], \] for all \(a,b,c,d,e\in H\). A heap \(H\) is called abelian if \([a, b, c] = [c, b, a]\) for all \(a,b,c\in H\). A truss is an abelian heap \(T\) together with an associative binary operation that distributes over the heap operation, that is: \[ s[t,t',t'']=[st,st',st'']\ \ \ \text{and}\ \ \ [t,t',t'']s=[ts,t's,t''s], \] for all \(s,t,t',t''\in T\). A left \(T\)-module is an abelian heap \(M\) together with an associative left action \(T\times M\to M\) (by \((t,m)\mapsto t\cdot m\)) of \(T\) on \(M\) that distributes over the heap operation.
In this paper, categorical aspects of the theory of modules over trusses are studied. It is defined the tensor product of modules over trusses by its universal property and it is presented an explicit construction that confirms the existence of the tensor product for all modules. It is shown, as in the case of modules over rings, tensoring with a bimodule over trusses defines a functor between the corresponding categories of modules. Moreover, truss versions of the Eilenberg-Watts theorem and Morita equivalence are given. Projective and small-projective modules over trusses are defined and their properties studied.


16Y99 Generalizations
08A99 Algebraic structures
Full Text: DOI arXiv


[1] Baer, R., Zur Einführung des Scharbegriffs, J. Reine Angew. Math., 160, 199-207 (1929) · JFM 55.0084.03
[2] Bergman, G. M., An Invitation to General Algebra and Universal Constructions, Universitext (2015), Springer: Springer Cham · Zbl 1317.08001
[3] Borceux, F., Handbook of Categorical Algebra. 2. Categories and Structures, Encyclopedia of Mathematics and Its Applications, vol. 51 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0843.18001
[4] Breaz, S.; Brzeziński, T., The Baer-Kaplansky theorem for all abelian groups and modules, Bull. Math. Sci. (2021), Online ready
[5] Brzeziński, T., Trusses: between braces and rings, Trans. Am. Math. Soc., 372, 4149-4176 (2019) · Zbl 1471.16053
[6] Brzeziński, T., Trusses: paragons, ideals and modules, J. Pure Appl. Algebra, 224, Article 106258 pp. (2020) · Zbl 1432.16049
[7] Brzeziński, T.; Mereta, S.; Rybołowicz, B., From pre-trusses to skew braces (2020), Publ. Mat., in press
[8] Brzeziński, T.; Rybołowicz, B., Congruence classes and extensions of rings with an application to braces, Commun. Contemp. Math., 23, Article 2050010 pp. (2021) · Zbl 1467.16048
[9] Brzeziński, T.; Rybołowicz, B., Modules over trusses vs modules over rings: direct sums and free modules, Algebr. Represent. Theory, 25, 1-23 (2022) · Zbl 1505.16065
[10] Colazzo, I.; Van Antwerpen, A., The algebraic structure of left semi-trusses, J. Pure Appl. Algebra, 225, 2, Article 106467 pp. (2021) · Zbl 1461.16038
[11] Fuchs, L., Abelian Groups (2015), Springer: Springer Cham · Zbl 1416.20001
[12] Kelly, G. M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ., 10 (2005), Reprint of the 1982 original · Zbl 1086.18001
[13] Mac Lane, S., Categories for the Working Mathematician (1998), Springer: Springer New York · Zbl 0906.18001
[14] Mitchell, B., Rings with several objects, Adv. Math., 8, 1-161 (1972) · Zbl 0232.18009
[15] Prüfer, H., Theorie der Abelschen Gruppen. I. Grundeigenschaften, Math. Z., 20, 165-187 (1924) · JFM 50.0631.07
[16] Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 153-170 (2007) · Zbl 1115.16022
[17] Street, R., Elementary cosmoi. I, (Category Seminar. Category Seminar, Proc. Sem., Sydney, 1972/1973. Category Seminar. Category Seminar, Proc. Sem., Sydney, 1972/1973, Lecture Notes in Math., vol. 420 (1974), Springer: Springer Berlin), 134-180
[18] Suškevič, A. K., Theory of Generalized Groups (1937), Goc. Naučno-Techn. Izdat. Ukrainy: Goc. Naučno-Techn. Izdat. Ukrainy Kharkov
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.