Pellegrini, M. A.; Tamburini Bellani, M. C. More on regular subgroups of the affine group. (English) Zbl 1360.20044 Linear Algebra Appl. 505, 126-151 (2016). Summary: This paper is a new contribution to the study of regular subgroups of the affine group \(\operatorname{AGL}_n(\mathbb{F})\), for any field \(\mathbb{F}\). In particular we associate to each partition \(\lambda \neq(1^{n + 1})\) of \(n + 1\) abelian regular subgroups in such a way that different partitions define non-conjugate subgroups. Moreover, we classify the regular subgroups of certain natural types for \(n \leq 4\). Our classification is equivalent to the classification of split local algebras of dimension \(n + 1\) over \(\mathbb{F}\). Our methods, based on classical results of linear algebra, are computer free. Cited in 6 Documents MSC: 20G15 Linear algebraic groups over arbitrary fields 15A21 Canonical forms, reductions, classification 16L30 Noncommutative local and semilocal rings, perfect rings 20B35 Subgroups of symmetric groups Keywords:regular subgroup; local algebra; Jordan canonical form PDF BibTeX XML Cite \textit{M. A. Pellegrini} and \textit{M. C. Tamburini Bellani}, Linear Algebra Appl. 505, 126--151 (2016; Zbl 1360.20044) Full Text: DOI arXiv References: [1] Caranti, A.; Dalla Volta, F.; Sala, M., Abelian regular subgroups of the affine group and radical rings, Publ. Math. Debrecen, 69, 297-308 (2006) · Zbl 1123.20002 [2] Catino, F.; Colazzo, I.; Stefanelli, P., On regular subgroups of the affine group, Bull. Aust. Math. Soc., 91, 76-85 (2015) · Zbl 1314.20001 [3] Catino, F.; Colazzo, I.; Stefanelli, P., Regular subgroups of the affine group and asymmetric product of radical braces, J. Algebra, 455, 164-182 (2016) · Zbl 1348.20002 [4] Catino, F.; Rizzo, R., Regular subgroups of affine group and radical circle algebras, Bull. Aust. Math. Soc., 79, 103-107 (2009) · Zbl 1184.20001 [5] Childs, L. N., Elementary abelian Hopf Galois structures and polynomial formal groups, J. Algebra, 283, 292-316 (2005) · Zbl 1071.16031 [6] Childs, L. N., On abelian Hopf Galois structures and finite commutative nilpotent rings, New York J. Math., 21, 205-229 (2015) · Zbl 1318.13030 [7] De Graaf, W., Classification of nilpotent associative algebras of small dimension (27 September 2010) [8] Hegedűs, P., Regular subgroups of the affine group, J. Algebra, 225, 740-742 (2000) · Zbl 0953.20040 [9] Horn, R. A.; Sergeichuk, V. V., Canonical forms for complex matrix congruence and \(^⁎\) congruence, Linear Algebra Appl., 416, 1010-1032 (2006) · Zbl 1098.15004 [10] Humphreys, J. E., Linear Algebraic Groups, Grad. Texts in Math., vol. 21 (1975), Springer-Verlag: Springer-Verlag New York, Heidelberg · Zbl 0325.20039 [11] Jacobson, N., Basic Algebra II (1989), W.H. Freeman and Company: W.H. Freeman and Company New York · Zbl 0694.16001 [12] Poonen, B., Isomorphism types of commutative algebras of finite rank over an algebraically closed field, (Computational Arithmetic Geometry. Computational Arithmetic Geometry, Contemp. Math., vol. 463 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 111-120 · Zbl 1155.13015 [13] (11 January 2016) [14] Tamburini Bellani, M. C., Some remarks on regular subgroups of the affine group, Int. J. Group Theory, 1, 17-23 (2012) · Zbl 1263.20049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.