Cvetko-Vah, Karin; Verwimp, Charlotte Skew lattices and set-theoretic solutions of the Yang-Baxter equation. (English) Zbl 1461.16039 J. Algebra 542, 65-92 (2020). It is known that lattices produce set-theoretic solutions to the Yang-Baxter equation. The paper uses skew lattices to construct set-theoretic solutions to the Yang-Baxter equation. The solutions constructed are in general degenerate. Reviewer: Leandro Vendramin (Buenos Aires) Cited in 6 Documents MSC: 16T25 Yang-Baxter equations 03G10 Logical aspects of lattices and related structures 06B75 Generalizations of lattices Keywords:Yang-Baxter equation; set-theoretic solutions; skew lattice; noncommutative lattice; distributive Software:Mace4 PDF BibTeX XML Cite \textit{K. Cvetko-Vah} and \textit{C. Verwimp}, J. Algebra 542, 65--92 (2020; Zbl 1461.16039) Full Text: DOI arXiv References: [1] Burris, S.; Sankappanavar, H. P., A Course in Universal Algebra, Grad. Texts in Math., vol. 78 (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0478.08001 [2] Catino, F.; Colazzo, I.; Stefanelli, P., Semi-braces and the Yang-Baxter equation, J. Algebra, 483, 163-187 (2017) · Zbl 1385.16035 [3] Clifford, A. H., Bands of semigroups, Proc. Amer. Math. Soc., 5, 499-504 (1954) · Zbl 0055.25001 [4] Cvetko-Vah, K., A new proof of Spinks’ theorem, Semigroup Forum, 73, 267-272 (2006) · Zbl 1104.06001 [5] Cvetko-Vah, K., Internal decompositions of skew lattices, Comm. Algebra, 35, 243-247 (2007) · Zbl 1112.06006 [6] Cvetko-Vah, K.; Pita Costa, J., On the coset laws for skew lattices, Semigroup Forum, 83, 395-411 (2011) · Zbl 1270.06003 [7] Cvetko-Vah, K.; Kinyon, M.; Leech, J.; Spinks, M., Cancellation in skew lattices, Order, 28, 9-23 (2011) · Zbl 1230.06004 [8] Cvetko-Vah, K.; Pita Costa, J., On the update operation in skew lattices, J. Appl. Logics, IfCoLog J. Log. Appl., 5, 1765-1774 (2018) · Zbl 1513.06015 [9] Drinfeld, V. G., On some unsolved problems in quantum group theory, (Quantum Groups. Quantum Groups, Leningrad, 1990. Quantum Groups. Quantum Groups, Leningrad, 1990, Lecture Notes in Math., vol. 1510 (1992), Springer: Springer Berlin), 1-8 [10] Etingof, P.; Schedler, T.; Soloviev, A., Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J., 100, 169-209 (1999) · Zbl 0969.81030 [11] Gateva-Ivanova, T.; Van den Bergh, M., Semigroups of I-type, J. Algebra, 206, 97-112 (1998) · Zbl 0944.20049 [12] Guarnieri, L.; Vendramin, L., Skew braces and the Yang-Baxter equation, Math. Comp., 86, 307, 2519-2534 (2017) · Zbl 1371.16037 [13] Howie, J. M., An Introduction to Semigroup Theory, L.M.S. Monographs, vol. 7 (1976), Academic Press [Harcourt Brace Jovanovich, Publishers]: Academic Press [Harcourt Brace Jovanovich, Publishers] London-New York · Zbl 0355.20056 [14] Jespers, E.; Van Antwerpen, A., Left semi-braces and solutions of the Yang-Baxter equation, Forum Math., 31, 1, 241-263 (2019) · Zbl 1456.16035 [15] Jordan, P., Über nichtkommutative Verbände, Arch. Math., 2, 56-59 (1949) · Zbl 0037.15604 [16] Kimura, N., The structure of idempotent semigroups, Pacific J. Math., 8, 257-275 (1958) · Zbl 0084.02702 [17] Kinyon, M.; Leech, J.; Pita Costa, J., Distributivity in skew lattices, Semigroup Forum, 91, 378-400 (2015) · Zbl 1348.06006 [18] Lebed, V., Cohomology of idempotent braidings with applications to factorizable monoids, Internat. J. Algebra Comput., 27, 4, 421-454 (2017) · Zbl 1380.16035 [19] Leech, J., Skew lattices in rings, Algebra Universalis, 26, 48-72 (1989) · Zbl 0669.06006 [20] Leech, J., Recent developments in the theory of skew lattices, Semigroup Forum, 52, 7-24 (1996) · Zbl 0844.06003 [21] Leech, J., Normal skew lattices, Semigroup Forum, 44, 1-8 (1992) · Zbl 0754.06004 [22] Leech, J., The geometric structure of skew lattices, Trans. Amer. Math. Soc., 335, 823-842 (1993) · Zbl 0792.06008 [23] Lu, J.-H.; Yan, M.; Zhu, Y.-C., On the set-theoretical Yang-Baxter equation, Duke Math. J., 104, 1, 1-18 (2000) · Zbl 0960.16043 [24] McCune, W. W., Mace4 (2007), version Dec-2007 [25] McLean, D., Idempotent semigroups, Amer. Math. Monthly, 61, 110-113 (1954) · Zbl 0055.01404 [26] Petrich, M., A construction and a classification of bands, Math. Nachr., 48, 263-274 (1971) · Zbl 0194.02702 [27] Petrich, M.; Reilly, N. R., Completely Regular Semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 23 (1999), A Wiley-Interscience Publication, John Wiley & Sons, Inc.: A Wiley-Interscience Publication, John Wiley & Sons, Inc. New York · Zbl 0967.20034 [28] Rump, W., A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math., 193, 40-55 (2005) · Zbl 1074.81036 [29] Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 153-170 (2007) · Zbl 1115.16022 [30] Schein, B. M., Pseudosemilattices and pseudolattices, Amer. Math. Soc. Transl. Ser. 2, 199, 1-16 (1983) · Zbl 0502.06001 [31] Soloviev, A., Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation, Math. Res. Lett., 7, 5-6, 577-596 (2000) · Zbl 1046.81054 [32] Spinks, M., On middle distributivity for skew lattices, Semigroup Forum, 6, 341-345 (2000) · Zbl 0964.06004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.