## Set-theoretic solutions of the Yang-Baxter equation, associated quadratic algebras and the minimality condition.(English)Zbl 1466.16034

A braided set $$(X,r)$$ is a set $$X$$ endowed with a set-theoretic solution $$r:X\times X\longrightarrow X\times X$$ of the Yang-Baxter equation $(r\times\operatorname{id})(\operatorname{id}\times r)(r\times\operatorname{id})=(\operatorname{id}\times r)(r\times\operatorname{id})(\operatorname{id}\times r).$ In the paper under review, the authors determine lower bounds for the numbers of orbits in $$X\times X$$ under the action of $$r$$.
Their first result asserts that $$X\times X$$ has at least $$\frac{|X|}{2}$$ (or $$\frac{|X|+1}{2}$$, according to the parity of $$|X|$$) $$r$$-orbits if $$r(x,y)=(\sigma_x(y),x)$$ with $$\sigma_x$$ bijective for all $$x,y\in X$$. Secondly, if $$r$$ also satisfies $$r(x,x)=(x,x)$$ for all $$x\in X$$, then $$X\times X$$ has at least $$2|X|-1$$ $$r$$-orbits.
Furthermore, they explicitly describe the braided sets which reach the lower bound. In the first situation, these turn out to be those with $$\sigma_x=\sigma$$, a cycle of length $$|X|$$, for all $$x\in X$$. In the second situation, the braided sets with minimal numbers of $$r$$-orbits are: (1) the set of reflections in the dihedral groups $$D_{2p}$$ with $$p$$ an odd prime; (2) the trivial braided set of order two; (3) $$X=\{1,2,3\}$$ with $$\sigma_1=\sigma_2=\operatorname{id}$$ and $$\sigma_3=(12)$$.
The proofs are of combinatorial nature and accessible to non-experts.
Actually, the results of the authors are more general as the assumption $$r(x,y)=(\sigma_x(y),x)$$ may be relaxed. Instead, one may assume that $$r(x,y)=(\sigma_x(y),\gamma_y(x))$$ with $$\sigma_x$$ and $$\gamma_y$$ bijective for all $$x,y\in X$$, and the lower bound still holds since the derived solution $$(X,r')$$ introduced by [A. Soloviev, Math. Res. Lett. 7, No. 5–6, 577–596 (2000; Zbl 1046.81054)] satisfies the first assumption and the numbers of $$r'$$-orbits and $$r$$-orbits are equals by [the second author et al., Trans. Am. Math. Soc. 372, No. 10, 7191–7223 (2019; Zbl 1432.16032)].
The authors also give some results and examples concerning the structure algebra of a braided set and several problems posed by T. Gateva-Ivanova [Adv. Math. 338, 649–701 (2018; Zbl 1437.16028)] are solved.

### MSC:

 16T25 Yang-Baxter equations 16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting) 16S36 Ordinary and skew polynomial rings and semigroup rings 16S37 Quadratic and Koszul algebras 16W50 Graded rings and modules (associative rings and algebras) 16P90 Growth rate, Gelfand-Kirillov dimension 81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

### Citations:

Zbl 1046.81054; Zbl 1432.16032; Zbl 1437.16028
Full Text:

### References:

 [1] Andruskiewitsch, N.; Graña, M., From racks to pointed Hopf algebras, Adv. Math., 178, 177-243 (2003) · Zbl 1032.16028 [2] Bachiller, D., Counterexample to a conjecture about braces, J. Algebra, 453, 160-176 (2016) · Zbl 1338.16022 [3] Bachiller, D., Extensions, matched products and simple braces, J. Pure Appl. Algebra, 222, 1670-1691 (2018) · Zbl 1437.20031 [4] Bachiller, D., Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks, J. Knot Theory Ramif., 27, 8, 1850055 (2018) · Zbl 1443.16040 [5] Bachiller, D.; Cedó, F.; Jespers, E., Solutions of the Yang-Baxter equation associated with a left brace, J. Algebra, 463, 80-102 (2016) · Zbl 1348.16027 [6] Bachiller, D.; Cedó, F.; Jespers, E.; Okniński, J., Iterated matched products of finite braces and simplicity; new solutions of the Yang-Baxter equation, Trans. Am. Math. Soc., 370, 4881-4907 (2018) · Zbl 1431.16035 [7] Bachiller, D.; Cedó, F.; Jespers, E.; Okniński, J., Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation, Commun. Contemp. Math., 21, 81850042, 30 (2019) · Zbl 1451.16029 [8] Bachiller, D.; Cedó, F.; Vendramin, L., A characterization of finite multipermutation solutions of the Yang-Baxter equation, Publ. Mat., 62, 2, 641-649 (2018) · Zbl 1432.16030 [9] Carter, JS; Jelsovsky, D.; Kamada, S.; Langford, L.; Saito, M., Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Am. Math. Soc., 355, 10, 3947-3989 (2003) · Zbl 1028.57003 [10] Catino, F.; Colazzo, I.; Stefanelli, P., Regular subgroups of the afine group and asymmetric product of braces, J. Algebra, 455, 164-182 (2016) · Zbl 1348.20002 [11] Cedó, F.; Jespers, E.; Okniński, J., Semiprime quadratic algebras of Gelfand-Kirillov dimension one, J. Algebra Appl., 3, 283-300 (2004) · Zbl 1080.16016 [12] Cedó, F.; Jespers, E.; Okniński, J., The Gelfand-Kirillov dimension of quadratic algebras satisfying the cyclic condition, Proc. Am. Math. Soc., 134, 653-663 (2006) · Zbl 1092.16014 [13] Cedó, F.; Jespers, E.; Okniński, J., Braces and the Yang-Baxter equation, Commun. Math. Phys., 327, 101-116 (2014) · Zbl 1287.81062 [14] Cedó, F.; Okniński, J., Gröbner bases for quadratic algebras of skew type, Proc. Edinb. Math. Soc. (2), 55, 2, 387-401 (2012) · Zbl 1348.20062 [15] Childs, LN, Skew braces and the Galois correspondence for Hopf Galois structures, J. Algebra, 511, 270-291 (2018) · Zbl 1396.12003 [16] Drinfeld, VG, On Some Unsolved Problems in Quantum Group Theory. Quantum Groups, 1-8 (1992), Berlin: Springer, Berlin [17] Etingof, P.; Schedler, T.; Soloviev, A., Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J., 100, 169-209 (1999) · Zbl 0969.81030 [18] Gateva-Ivanova, T., Skew polynomial rings with binomial relations, J. Algebra, 185, 3, 710-753 (1996) · Zbl 0863.16016 [19] Gateva-Ivanova, T., A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys., 45, 3828-3858 (2004) · Zbl 1065.16037 [20] Gateva-Ivanova, T., Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity, Adv. Math., 230, 2152-2175 (2012) · Zbl 1267.81209 [21] Gateva-Ivanova, T., Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, Adv. Math., 338, 649-701 (2018) · Zbl 1437.16028 [22] Gateva-Ivanova, T.: A combinatorial approach to noninvolutive set-theoretic solutions of the Yang-Baxter equation (2018). Preprint arXiv:1808.03938v3 [math.QA] · Zbl 1437.16028 [23] Gateva-Ivanova, T.; Jespers, E.; Okniński, J., Quadratic algebras of skew type and the underlying monoids, J. Algebra, 270, 635-659 (2003) · Zbl 1054.16024 [24] Gateva-Ivanova, T.; Majid, S., Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra, 319, 4, 1462-1529 (2008) · Zbl 1140.16016 [25] Gateva-Ivanova, T.; Van den Bergh, M., Semigroups of $$I$$-type, J. Algebra, 206, 97-112 (1998) · Zbl 0944.20049 [26] Guarnieri, L.; Vendramin, L., Skew braces and the Yang-Baxter equation, Math. Comput., 86, 307, 2519-2534 (2017) · Zbl 1371.16037 [27] Jespers, E.; Kubat, L.; Van Antwerpen, A., The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang-Baxter equation, Trans. Am. Math. Soc., 372, 10, 7191-7223 (2019) · Zbl 1432.16032 [28] Jespers, E.; Okniński, J., Noetherian Semigroup Algebras (2007), Dordrecht: Springer, Dordrecht · Zbl 1135.16001 [29] Jespers, E.; Van Campenhout, M., Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids II, J. Algebra, 492, 524-546 (2017) · Zbl 1379.16017 [30] Joyce, D., A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 23, 37-65 (1982) · Zbl 0474.57003 [31] Joyce, D., Simple quandles, J. Algebra, 79, 307-318 (1982) · Zbl 0514.20018 [32] Lebed, V., Cohomology of idempotent braidings with applications to factorizable monoids, Int. J. Algebra Comput., 27, 421-454 (2017) · Zbl 1380.16035 [33] Lebed, V.; Vendramin, L., Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation, Adv. Math., 304, 1219-1261 (2017) · Zbl 1356.16027 [34] Lebed, V.; Vendramin, L., On the structure groups of set-theoretic solutions to the Yang-Baxter equation, Proc. Edinburgh Math. Soc., 62, 683-717 (2019) · Zbl 1423.16034 [35] Lu, J.; Yan, M.; Zhu, Y., On the set-theoretical Yang-Baxter equation, Duke Math. J., 104, 1-18 (2000) · Zbl 0960.16043 [36] Manin, Y., Quantum Groups and Non-commutative Geometry (1988), Montreal: Université de Montréal, Montreal · Zbl 0724.17006 [37] Polishchuk, A.; Positselski, L., Quadratic Algebras (2005), New York: American Mathematical Society, New York · Zbl 1145.16009 [38] Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 153-170 (2007) · Zbl 1115.16022 [39] Smoktunowicz, A., On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation, Trans. Am. Math. Soc., 370, 6535-6564 (2018) · Zbl 1440.16040 [40] Smoktunowicz, A.; Smoktunowicz, A., Set-theoretic solutions of the Yang-Baxter equation and new classes of R-matrices, Linear Algebra Appl., 546, 86-114 (2018) · Zbl 1384.16025 [41] Smoktunowicz, A.; Vendramin, L., On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra, 2, 1, 47-86 (2018) · Zbl 1416.16037 [42] Soloviev, A., Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation, Math. Res. Lett., 7, 577-596 (2000) · Zbl 1046.81054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.