×

Perturbations of spiky strings in \(\mathrm{AdS}_{3}\). (English) Zbl 1395.83102

Summary: Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equation for the perturbation scalar which governs the behaviour of such small deformations, is a special case of the well-known Darboux-Treibich-Verdier (DTV) equation. The eigenvalues and eigensolutions of the DTV equation for our case are obtained by solving certain continued fractions numerically. These solutions are thereafter utilised to further demonstrate that there do exist finite perturbations of the AdS spiky strings. Our results therefore establish that the spiky string configurations in \(\mathrm{AdS}_{3}\) are indeed stable against small fluctuations. Comments on future possibilities of work are included in conclusion.

MSC:

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Burden, CJ; Tassie, LJ, Some exotic mesons and glueballs from the string model, Phys. Lett., B 110, 64, (1982) · doi:10.1016/0370-2693(82)90953-4
[2] C.J. Burden and L.J. Tassie, Rotating strings, glueballs and exotic mesons, Austral. J. Phys.35 (1982) 223 [INSPIRE].
[3] Burden, CJ; Tassie, LJ, Additional rigidly rotating solutions in the string model of hadrons, Austral. J. Phys., 37, 1, (1984) · doi:10.1071/PH840001
[4] C.J. Burden, Gravitational radiation from a particular class of cosmic strings, Phys. Lett.B 164 (1985) 277. · Zbl 1119.81086
[5] F. Embacher, Rigidly rotating cosmic strings, Phys. Rev.D 46 (1992) 3659 [Erratum ibid.D 47 (1993) 4803].
[6] Vega, HJ; Egusquiza, IL, Planetoid string solutions in 3 + 1 axisymmetric space-times, Phys. Rev., D 54, 7513, (1996)
[7] Frolov, VP; Hendy, S.; Villiers, JP, Rigidly rotating strings in stationary axisymmetric space-times, Class. Quant. Grav., 14, 1099, (1997) · Zbl 0874.53074 · doi:10.1088/0264-9381/14/5/015
[8] Kar, S.; Mahapatra, S., Planetoid strings: solutions and perturbations, Class. Quant. Grav., 15, 1421, (1998) · Zbl 0941.83046 · doi:10.1088/0264-9381/15/6/002
[9] Burden, CJ, Comment on “stationary rotating strings as relativistic particle mechanics, Phys. Rev., D 78, 128301, (2008)
[10] Ogawa, K.; Ishihara, H.; Kozaki, H.; Nakano, H.; Saito, S., Stationary rotating strings as relativistic particle mechanics, Phys. Rev., D 78, (2008)
[11] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[12] Kruczenski, M., Spiky strings and single trace operators in gauge theories, JHEP, 08, 014, (2005) · doi:10.1088/1126-6708/2005/08/014
[13] Gubser, SS; Klebanov, IR; Polyakov, AM, A semiclassical limit of the gauge/string correspondence, Nucl. Phys., B 636, 99, (2002) · Zbl 0996.81076 · doi:10.1016/S0550-3213(02)00373-5
[14] J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 superYang-Mills, JHEP03 (2003) 013 [hep-th/0212208] [INSPIRE].
[15] Dolan, L.; Nappi, CR; Witten, E., A relation between approaches to integrability in superconformal Yang-Mills theory, JHEP, 10, 017, (2003) · doi:10.1088/1126-6708/2003/10/017
[16] L. Dolan, C.R. Nappi and E. Witten, Yangian symmetry in D = 4 superconformal Yang-Mills theory, in proceedings of 3rd International Symposium on Quantum theory and symmetries (QTS3), Cincinnati, U.S.A., September 10-14, 2003, pp. 300-315 (2004) [DOI:https://doi.org/10.1142/9789812702340_0036] [hep-th/0401243] [INSPIRE]. · Zbl 1373.83097
[17] Mandal, G.; Suryanarayana, NV; Wadia, SR, Aspects of semiclassical strings in ads_{5}, Phys. Lett., B 543, 81, (2002) · Zbl 0997.81092 · doi:10.1016/S0370-2693(02)02424-3
[18] Bena, I.; Polchinski, J.; Roiban, R., Hidden symmetries of the ads_{5} × S\^{}{5} superstring, Phys. Rev., D 69, (2004)
[19] S. Frolov and A.A. Tseytlin, Multispin string solutions in AdS_{5} × \(S\)\^{}{5}, Nucl. Phys.B 668 (2003) 77 [hep-th/0304255] [INSPIRE]. · Zbl 1058.81652
[20] R. Ishizeki and M. Kruczenski, Single spike solutions for strings on S\^{}{2}and S\^{}{3}, Phys. Rev.D 76 (2007) 126006 [arXiv:0705.2429] [INSPIRE]. · Zbl 1222.81243
[21] Ishizeki, R.; Kruczenski, M.; Tirziu, A.; Tseytlin, AA, Spiky strings in ads_{3} × S\^{}{1} and their AdS-pp-wave limits, Phys. Rev., D 79, (2009) · Zbl 1222.81243
[22] Biswas, S.; Panigrahi, KL, Spiky strings on I-brane, JHEP, 08, 044, (2012) · Zbl 1397.83128 · doi:10.1007/JHEP08(2012)044
[23] Banerjee, A.; Panigrahi, KL; Pradhan, PM, Spiky strings on ads_{3} × S\^{}{3} with NS-NS flux, Phys. Rev., D 90, 106006, (2014)
[24] Banerjee, A.; Bhattacharya, S.; Panigrahi, KL, Spiky strings in \(ϰ\)-deformed AdS, JHEP, 06, 057, (2015) · Zbl 1388.81480
[25] Bhattacharya, S.; Kar, S.; Panigrahi, KL, Perturbations of spiky strings in flat spacetimes, JHEP, 01, 116, (2017) · Zbl 1373.83097 · doi:10.1007/JHEP01(2017)116
[26] Frolov, S.; Tseytlin, AA, Semiclassical quantization of rotating superstring in ads_{5} × S\^{}{5}, JHEP, 06, 007, (2002) · doi:10.1088/1126-6708/2002/06/007
[27] J. Garriga and A. Vilenkin, Black holes from nucleating strings, Phys. Rev.D 47 (1993) 3265 [hep-ph/9208212].
[28] J. Guven, Perturbations of a topological defect as a theory of coupled scalar fields in curved space interacting with an external vector potential, Phys. Rev.D 48 (1993) 5562 [gr-qc/9304033].
[29] V. Frolov and A.L. Larsen, Propagation of perturbations along strings, Nucl. Phys.B 414 (1994) 129 [hep-th/9303001]. · Zbl 1007.83524
[30] R. Capovilla and J. Guven, Geometry of deformations of relativistic membranes, Phys. Rev.D 51 (1995) 6736 [gr-qc/9411060]. · Zbl 1291.83193
[31] Forini, V.; Puletti, VGM; Griguolo, L.; Seminara, D.; Vescovi, E., Remarks on the geometrical properties of semiclassically quantized strings, J. Phys., A 48, 475401, (2015) · Zbl 1330.81156
[32] Jevicki, A.; Jin, K., Solitons and AdS string solutions, Int. J. Mod. Phys., A 23, 2289, (2008) · doi:10.1142/S0217751X0804113X
[33] Sparre, C., Sur l’equation \( \begin{array}{l}\frac{d^2y}{d{x}^2}+\left[2v\frac{k^2 snxcnx}{dnx}+2{v}_1\frac{snxdnx}{cnx}-2{v}_2\frac{cnxdnx}{snx}\right]\frac{dy}{dx}=\hfill \\ {}\left[\frac{I}{s{n}^2x}\left({n}_3-{v}_2\right)\left({n}_3+{v}_2+1\right)+\frac{d{n}^2x}{c{n}^2x}\left({n}_2-{v}_1\right)\left({n}_2+{v}_1+1\right)+\frac{k^2c{n}^2x}{d{n}^2x}\left({n}_1-v\right)\left({n}_1+v+1\right)\right.\hfill \\ {}\left.+{k}^2s{n}^2x\left(n+v+{v}_1+{v}_2\right)\left(n-v-{v}_1-{v}_2+1\right)+h\right]\hfill \end{array} \), Acta Math., 3, 105, (1883) · JFM 16.0277.01 · doi:10.1007/BF02422445
[34] Sparre, C., Sur l’equation \( \begin{array}{l}\frac{d^2y}{d{x}^2}+\left[2v\frac{k^2 snxcnx}{dnx}+2{v}_1\frac{snxdnx}{cnx}-2{v}_2\frac{cnxdnx}{snx}\right]\frac{dy}{dx}=\hfill \\ {}\left[\frac{I}{s{n}^2x}\left({n}_3-{v}_2\right)\left({n}_3+{v}_2+1\right)+\frac{d{n}^2x}{c{n}^2x}\left({n}_2-{v}_1\right)\left({n}_2+{v}_1+1\right)+\frac{k^2c{n}^2x}{d{n}^2x}\left({n}_1-v\right)\left({n}_1+v+1\right)\right.\hfill \\ {}\left.+{k}^2s{n}^2x\left(n+v+{v}_1+{v}_2\right)\left(n-v-{v}_1-{v}_2+1\right)+h\right]y\hfill \end{array} \), Acta Math., 3, 289, (1883) · doi:10.1007/BF02422454
[35] Matveev, VB; Smirnov, AO, On the link between the sparre equation and Darboux-treibich-verdier equation, Lett. Math. Phys., 76, 283, (2006) · Zbl 1133.34002 · doi:10.1007/s11005-006-0074-6
[36] Y-M. Chiang, A. Ching and C-Y. Tsang, Symmetries of the Darboux equation, to appear in Kumamoto J. Math.. [arXiv:1509.03995].
[37] Frolov, S.; Tirziu, A.; Tseytlin, AA, Logarithmic corrections to higher twist scaling at strong coupling from AdS/CFT, Nucl. Phys., B 766, 232, (2007) · Zbl 1119.81086 · doi:10.1016/j.nuclphysb.2006.12.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.