×

Numerical prediction of the influence of uncertain inflow conditions in pipes by polynomial chaos. (English) Zbl 07516263

Summary: Nearly all types of flow measurement devices installed in pipes are affected by the flow conditions at their inlet section, which can lead to measurement errors of several per cent. To evaluate the influence of uncertain inflow profiles on the flow field at different positions of the flow meter, a non-intrusive polynomial chaos approach is applied to simulations of turbulent pipe flow. This allows us to estimate the expected variations of the flow profiles as a function of the distance to the inlet of the pipe in an efficient way. The polynomial chaos approach shows reasonable convergence already for a small number of function evaluations. The results are validated by comparison with a quasi-Monte Carlo method and an exact solution, where available. The approximation error of the polynomial chaos method with 10 function evaluations is smaller than the one for the quasi-Monte Carlo method with 100 runs.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

Software:

TOMS659
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bratley, P.; Fox, B. L., Algorithm 659 Implementing Sobol’s Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, 14, 88-100 (1988) · Zbl 0642.65003
[2] Cameron, R. H.; Martin, W. T., The Orthogonal Development of Nonlinear Functionals in Series of Fourier-Hermite Functionals, Annals of Mathematics, 48, 385-392 (1947) · Zbl 0029.14302
[3] Congedo, P. M.; Duprat, C.; Balarac, G.; Corre, C.; Aiaa, Aiaa 2011-3869, Effects of Inlet Uncertainties on Prediction of Turbulent Flows Using RANS and LES Simulations (2011) · doi:10.2514/6.2011-3869
[4] Congedo, P. M.; Duprat, C.; Balarac, G.; Corre, C., Numerical Prediction of Turbulent Flows Using Reynolds-Averaged Navier-Stokes and Large-Eddy Simulation with Uncertain Inflow Conditions, International Journal for Numerical Methods in Fluids, 72, 341-358 (2013) · Zbl 1455.76056
[5] García-Sánchez, C.; Philips, D. A.; Gorlé, C., Quantifying Inflow Uncertainties for CFD Simulations of the Flow in Downtown Oklahoma City, Building and Environment, 78, 118-129 (2014)
[6] Gersten, K.; Merzkirch, W., Fully Developed Turbulent Pipe Flow, Fluid Mechanics of Flow Metering, 1-22 (2005), Berlin: Springer, Berlin · Zbl 1082.76001
[7] Gersten, K.; Herwig, G., Strömungsmechanik: Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht [Fluid Mechanics: Fundamentals of Momentum, Heat, and Mass Transfer from an Asymptotic Point of View] (1992), Braunschweig: Vieweg
[8] Gerstner, T.; Griebel, M., Numerical Integration Using Sparse Grids, Numerical Algorithms, 18, 209-232 (1998) · Zbl 0921.65022
[9] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (1991), New York: Springer · Zbl 0722.73080
[10] Gibson, N. L.; Gifford-Miears, C.; Leon, A. S.; Vasylkivska, V. S., Efficient Computation of Unsteady Flow in Complex River Systems with Uncertain Inputs, International Journal of Computer Mathematics, 91, 781-797 (2014) · Zbl 1358.76062
[11] Han, X.; Sagaut, P.; Lucor, D., On Sensitivity of RANS Simulations to Uncertain Turbulent Inflow Conditions, Computers & Fluids, 61, 2-5 (2012) · Zbl 1365.76085
[12] Han, X.; Sagaut, P.; Lucor, D.; Afgan, I., Stochastic Response of the Laminar Flow Past a Flat Plate Under Uncertain Inflow Conditions, International Journal of Computational Fluid Dynamics, 26, 101-117 (2012)
[13] Horner, B.; Mesch, F.; Beck, M. S., An Induction Flowmeter Insensitive to Asymmetric Flow Profiles, Process Tomography 1995, 6-8 April 1995, Bergen, Norway, 321-330 (1995), Manchester: UMIST, Manchester
[14] Hosder, S.; Walters, R. W.; Perez, R., A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulations, 44th AIAA Aerospace Science Meeting and Exhibit, edited by AIAA, AIAA 2006-891 (2006), Reno, NV · doi:10.2514/6.2006-891
[15] Hrenya, C. M.; Bolio, E. J.; Chakrabarti, D.; Sinclair, J. L., Comparison of Low Reynolds Number k-ε Turbulence Models in Predicting Fully Developed Pipe Flow, Chemical Engineering Science, 50, 1923-1941 (1995)
[16] Knio, O. M.; Le Maître, O. P., Uncertainty Propagation in CFD Using Polynomial Chaos Decomposition, Fluid Dynamics Research, 38, 616-640 (2006) · Zbl 1178.76297
[17] Ko, J.; Lucor, D.; Sagaut, P., Sensitivity of Two-Dimensional Spatially Developing Mixing Layers with Respect to Uncertain Inflow Conditions, Physics of Fluids, 20, 1-20 (2008) · Zbl 1182.76390
[18] Le Maître, O. P.; Knio, O. M., Spectral Methods for Uncertainty Quantification (2010), Dordrecht: Springer · Zbl 1193.76003
[19] Le Maître, O. P.; Knio, O. M.; Najm, H. N.; Ghanem, R. G., A Stochastic Projection Method for Fluid Flow. I. Basic Formulation, Journal of Computational Physics, 173, 481-511 (2001) · Zbl 1051.76056
[20] Le Maître, O. P.; Reagan, M. T.; Najm, H. N.; Ghanem, R. G.; Knio, O. M., A Stochastic Projection Method for Fluid Flow. II. Random Process, Journal of Computational Physics, 181, 9-44 (2002) · Zbl 1052.76057
[21] Lin, G.; Wan, X.; Su, C.-H.; Karniadakis, G. E., Stochastic Computational Fluid Mechanics, Computing in Science & Engineering, 9, 21-29 (2007)
[22] McKeon, B. J.; Morrison, J. F.; Jiang, W.; Li, J.; Smits, A. J.; Smits, A. J., Revised Log-Law Constants for Fully-Developed Turbulent Pipe Flow, IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, Vol. 74 of Fluid Mechanics and its Applications, 265-270 (2004), Netherlands: Springer, Netherlands · Zbl 1080.76525
[23] Menter, F. R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 32, 1598-1605 (1993)
[24] Mickan, B.; Wendt, G.; Kramer, R.; Dopheide, D., Systematic Investigation of Pipe Flows and Installation Effects Using Laser Doppler Anemometry — Part II. The Effect of Disturbed Flow Profiles on Turbine Gas Meters — A Describing Empirical Model, Flow Measurement and Instrumentation, 7, 151-160 (1996)
[25] Myong, H. K.; Kasagi, N., A New Approach to the Improvement of k-ε Turbulence Model for Wall-Bounded Shear Flows, JSME International Journal, 33, 63-72 (1990)
[26] Myong, H. K.; Kasagi, N.; Hirata, M., Numerical Prediction of Turbulent Pipe Flow Heat Transfer for Various Prandtl Number Fluids with the Improved k-ε Turbulence Model, JSME International Journal, 32, 613-622 (1989)
[27] Najm, H. N., Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics, Annual Review of Fluid Mechanics, 41, 35-52 (2009) · Zbl 1168.76041
[28] Smolyak, S. A., Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions, Doklady Akademii Nauk SSSR, 148, 1042-1045 (1963) · Zbl 0202.39901
[29] Sobol, I. M., On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals, USSR Computational Mathematics and Mathematical Physics, 7, 86-112 (1967) · Zbl 0185.41103
[30] Tartakovsky, D. M.; Xiu, D., Stochastic Analysis of Transport in Tubes With Rough Walls, Journal of Computational Physics, 217, 248-259 (2006) · Zbl 1146.76651
[31] Tawackolian, K., Fluiddynamische Auswirkungen auf die Messabweichung von Ultraschall-Durchflussmessgeräten [Fluid Dynamic Influences on the Measurement Deviation of Ultrasonic Flow Meters], PhD diss (2013), Technische Universität Berlin
[32] Wan, X.; Karniadakis, G. E., Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures, SIAM Journal on Scientific Computing, 28, 901-928 (2006) · Zbl 1128.65009
[33] Wendt, G., Investigation and Characterization of Water Meter Behavior Under Different Flow Conditions, OIML Bulletin, 55, 5-14 (2014)
[34] Wendt, G.; Mickan, B.; Kramer, R.; Dopheide, D., Systematic Investigation of Pipe Flows and Installation Effects Using Laser Doppler Anemometry — Part I. Profile Measurements Downstream of Several Pipe Configurations and Flow Conditioners, Flow Measurement and Instrumentation, 7, 141-149 (1996)
[35] Wiener, N., The Homogeneous Chaos, American Journal of Mathematics, 60, 897-936 (1938) · JFM 64.0887.02
[36] Wildemann, C.; Merzkirch, W.; Gersten, K., A Universal, Nonintrusive Method for Correcting the Reading of a Flow Meter in Pipe Flow Disturbed by Installation Effects, Journal of Fluids Engineering - Transaction of the ASME, 124, 650-656 (2002)
[37] Witteveen, J. A.S.; Bijl, H., Efficient Quantification of the Effect of Uncertainties in Advection-Diffusion Problems Using Polynomial Chaos, Numerical Heat Transfer B, 53, 437-465 (2008)
[38] Xiu, D., Fast Numerical Methods for Stochastic Computations: A Review, Communications in Computational Physics, 5, 242-272 (2009) · Zbl 1364.65019
[39] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1210.65002
[40] Xiu, D.; Karniadakis, G. E., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM, 24, 1118-1139 (2002)
[41] Xiu, D.; Karniadakis, G. E., Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos, Journal of Computational Physics, 187, 137-167 (2003) · Zbl 1047.76111
[42] Yeh, T. T.; Mattingly, G. E., Pipeflow Downstream of a Reducer and its Effects on Flowmeters, Flow Measurement and Instrumentation, 5, 181-187 (1994)
[43] Yeh, T. T.; Mattingly, G. E., Laser Doppler Velocimeter Studies of the Pipeflow Produced by a Generic Header (1995), Technical Note 1409. National Institute of Standards and Technology
[44] Yeh, T. T.; Mattingly, G. E., Flowmeter Installation Effects Due to A Generic Header (1996), Technical Note 1419. National Institute of Standards and Technology
[45] Zimmermann, H., Examination of Disturbed Pipe Flow and its Effects on Flow Measurement Using Orifice Plates, Flow Measurement and Instrumentation, 10, 223-240 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.