×

Space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. (English) Zbl 1493.74116

Summary: We present a space-time (ST) isogeometric analysis framework for car and tire aerodynamics with road contact and tire deformation and rotation. The geometries of the computational models for the car body and tires are close to the actual geometries. The computational challenges include i) the complexities of these geometries, ii) the tire rotation, iii) maintaining accurate representation of the boundary layers near the tire while being able to deal with the flow-domain topology change created by the road contact, iv) the turbulent nature of the flow, v) the aerodynamic interaction between the car body and the tires, and vi) NURBS mesh generation for the complex geometries. The computational framework is made of the ST Variational Multiscale (ST-VMS) method, ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods, ST Isogeometric Analysis (ST-IGA), integrated combinations of these ST methods, NURBS Surface-to-Volume Guided Mesh Generation (NSVGMG) method, and the element-based mesh relaxation (EBMR). The ST context provides higher-order accuracy in general, the VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, and the moving-mesh feature of the ST context enables high-resolution flow computation near the moving fluid-solid interfaces. The ST-SI enables moving-mesh computation with the tire rotating. The mesh covering the tire rotates with it, and the SI between the rotating mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution flow representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire-road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire geometry and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. The NSVGMG enables NURBS mesh generation for the complex car and tire geometries, and the EBMR improves the quality of the meshes. The car and tire aerodynamics computation we present shows the effectiveness of the analysis framework we have built.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74M15 Contact in solid mechanics
76G25 General aerodynamics and subsonic flows

Software:

PINN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takizawa, K.; Tezduyar, TE, Multiscale space-time fluid-structure interaction techniques, Comput Mech, 48, 247-267 (2011) · Zbl 1398.76128 · doi:10.1007/s00466-011-0571-z
[2] Takizawa, K.; Tezduyar, TE, Space-time fluid-structure interaction methods, Math Models Methods Appl Sci, 22, supp02, 1230001 (2012) · Zbl 1248.76118 · doi:10.1142/S0218202512300013
[3] Takizawa, K.; Tezduyar, TE; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255 (2015) · Zbl 1325.76139 · doi:10.1142/S0218202515400072
[4] Takizawa, K.; Tezduyar, TE; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406 (2015) · Zbl 1329.76345 · doi:10.1142/S0218202515400126
[5] Takizawa, K.; Tezduyar, TE; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput Mech, 57, 965-977 (2016) · Zbl 1382.74044 · doi:10.1007/s00466-016-1272-4
[6] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput Mech, 54, 955-971 (2014) · Zbl 1311.74045 · doi:10.1007/s00466-013-0935-7
[7] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time fluid mechanics computation of heart valve models, Comput Mech, 54, 973-986 (2014) · Zbl 1311.74083 · doi:10.1007/s00466-014-1046-9
[8] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, TE, Space-time computational techniques for the aerodynamics of flapping wings, J Appl Mech, 79, 010903 (2012) · Zbl 1286.76179 · doi:10.1115/1.4005073
[9] Takizawa, K.; Tezduyar, TE; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 142, 15-20 (2017) · Zbl 1390.76689 · doi:10.1016/j.compfluid.2016.02.021
[10] Takizawa, K.; Tezduyar, TE; Terahara, T.; Sasaki, T.; Wriggers, P.; Lenarz, T., Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA), Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics, 77-99 (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-59548-1_6
[11] Takizawa, K.; Tezduyar, TE; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods, Comput Fluids, 158, 176-188 (2017) · Zbl 1390.76944 · doi:10.1016/j.compfluid.2016.11.012
[12] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput Mech, 63, 1165-1185 (2019) · Zbl 1469.74041 · doi:10.1007/s00466-018-1642-1
[13] Takizawa, K.; Tezduyar, TE; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput Mech, 52, 1351-1364 (2013) · Zbl 1398.74097 · doi:10.1007/s00466-013-0880-5
[14] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film, Comput Mech, 64, 1699-1718 (2019) · Zbl 1465.74130 · doi:10.1007/s00466-019-01746-8
[15] Tezduyar, TE, Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44 (1992) · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[16] Tezduyar, TE, Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605 · doi:10.1002/fld.505
[17] Tezduyar, TE; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044 · doi:10.1002/fld.1430
[18] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[19] Hughes, TJR, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401 (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[20] Hughes, TJR; Oberai, AA; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237 · doi:10.1063/1.1367868
[21] Bazilevs, Y.; Calo, VM; Cottrell, JA; Hughes, TJR; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201 (2007) · Zbl 1169.76352 · doi:10.1016/j.cma.2007.07.016
[22] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J Comput Phys, 229, 3402-3414 (2010) · Zbl 1290.76037 · doi:10.1016/j.jcp.2010.01.008
[23] Hughes, TJR; Liu, WK; Zimmermann, TK, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 329-349 (1981) · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[24] Bazilevs, Y.; Calo, VM; Hughes, TJR; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37 (2008) · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[25] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch Comput Methods Eng, 19, 171-225 (2012) · Zbl 1354.92023 · doi:10.1007/s11831-012-9071-3
[26] Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Boboken. ISBN 978-0470978771 · Zbl 1286.74001
[27] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computational analysis methods for complex unsteady flow problems, Math Models Methods Appl Sci, 29, 825-838 (2019) · Zbl 1425.76128 · doi:10.1142/S0218202519020020
[28] Kalro, V.; Tezduyar, TE, A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332 (2000) · Zbl 0993.76044 · doi:10.1016/S0045-7825(00)00204-8
[29] Bazilevs, Y.; Hughes, TJR, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput Fluids, 36, 12-26 (2007) · Zbl 1115.76040 · doi:10.1016/j.compfluid.2005.07.012
[30] Hsu, M-C; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions, Comput Mech, 50, 499-511 (2012) · doi:10.1007/s00466-012-0686-x
[31] Bazilevs, Y.; Hughes, TJR, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput Mech, 43, 143-150 (2008) · Zbl 1171.76043 · doi:10.1007/s00466-008-0277-z
[32] Hsu, M-C; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: simulating the full machine, Comput Mech, 50, 821-833 (2012) · Zbl 1311.74038 · doi:10.1007/s00466-012-0772-0
[33] Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, of Congenital Hearts Alliance (MOCHA) M (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277-291. doi:10.1007/s00466-011-0599-0 · Zbl 1398.76102
[34] Bazilevs, Y.; Hsu, M-C; Kiendl, J.; Wüchner, R.; Bletzinger, K-U, 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades, Int J Numer Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087 · doi:10.1002/fld.2454
[35] Hsu, M-C; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput Fluids, 49, 93-100 (2011) · Zbl 1271.76276 · doi:10.1016/j.compfluid.2011.05.002
[36] Korobenko, A.; Hsu, M-C; Akkerman, I.; Tippmann, J.; Bazilevs, Y., Structural mechanics modeling and FSI simulation of wind turbines, Math Models Methods Appl Sci, 23, 249-272 (2013) · Zbl 1261.74011 · doi:10.1142/S0218202513400034
[37] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology, 253-336 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_7
[38] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Otoguro, Y.; Mochizuki, H.; Wu, MCH, Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization, J Adv Eng Comput, 4, 1-32 (2020) · Zbl 1454.65111 · doi:10.25073/jaec.202041.278
[39] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Otoguro, Y.; Mochizuki, H.; Wu, MCH; Grama, A.; Sameh, A., ALE and space-time variational multiscale isogeometric analysis of wind turbines and turbomachinery, Parallel algorithms in computational science and engineering. Modeling and simulation in science, engineering and technology, 195-233 (2020), Berlin: Springer, Berlin · Zbl 1454.65111 · doi:10.1007/978-3-030-43736-7_7
[40] Ravensbergen, M.; Bayram, AM; Korobenko, A., The actuator line method for wind turbine modelling applied in a variational multiscale framework, Comput Fluids, 201, 104465 (2020) · Zbl 1519.76158 · doi:10.1016/j.compfluid.2020.104465
[41] Bayram, AM; Bear, C.; Bear, M.; Korobenko, A., Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method, Comput Fluids, 200, 104432 (2020) · Zbl 1519.76270 · doi:10.1016/j.compfluid.2020.104432
[42] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Comput Fluids, 141, 155-174 (2016) · Zbl 1390.76376 · doi:10.1016/j.compfluid.2016.03.008
[43] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, SMI; Sarkar, S., ALE-VMS formulation for stratified turbulent incompressible flows with applications, Math Models Methods Appl Sci, 25, 2349-2375 (2015) · Zbl 1329.76050 · doi:10.1142/S0218202515400114
[44] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Korobenko, A., Computational flow analysis in aerospace, energy and transportation technologies with the variational multiscale methods, J Adv Eng Comput, 4, 83-117 (2020) · Zbl 1454.65120 · doi:10.25073/jaec.202042.279
[45] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Korobenko, A.; Grama, A.; Sameh, A., Variational multiscale flow analysis in aerospace, energy and transportation technologies, Parallel algorithms in computational science and engineering. Modeling and simulation in science, engineering and technology, 235-280 (2020), Berlin: Springer, Berlin · Zbl 1454.65120 · doi:10.1007/978-3-030-43736-7_8
[46] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J Appl Mech, 83, 6, 061010 (2016) · doi:10.1115/1.4033080
[47] Bazilevs, Y.; Calo, VM; Zhang, Y.; Hughes, TJR, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput Mech, 38, 310-322 (2006) · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[48] Bazilevs, Y.; Hsu, M-C; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S.; Isaksen, J., Computational fluid-structure interaction: methods and application to cerebral aneurysms, Biomech Model Mechanobiol, 9, 481-498 (2010) · doi:10.1007/s10237-010-0189-7
[49] Hsu, M-C; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem Anal Des, 47, 593-599 (2011) · doi:10.1016/j.finel.2010.12.015
[50] Long, CC; Marsden, AL; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput Mech, 52, 971-981 (2013) · Zbl 1388.74039 · doi:10.1007/s00466-013-0858-3
[51] Hsu, M-C; Kamensky, D.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput Mech, 54, 1055-1071 (2014) · Zbl 1311.74039 · doi:10.1007/s00466-014-1059-4
[52] Kamensky, D.; Hsu, M-C; Schillinger, D.; Evans, JA; Aggarwal, A.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273 · doi:10.1016/j.cma.2014.10.040
[53] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C, Computational cardiovascular flow analysis with the variational multiscale methods, J Adv Eng Comput, 3, 366-405 (2019) · doi:10.25073/jaec.201932.245
[54] Hughes, TJR; Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C; Grama, A.; Sameh, A., Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization, Parallel algorithms in computational science and engineering. Modeling and simulation in science, engineering and technology, 151-193 (2020), Berlin: Springer, Berlin · Zbl 1454.65119 · doi:10.1007/978-3-030-43736-7_6
[55] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS, Comput Mech, 50, 719-727 (2012) · doi:10.1007/s00466-012-0770-2
[56] Wu, MCH; Kamensky, D.; Wang, C.; Herrema, AJ; Xu, F.; Pigazzini, MS; Verma, A.; Marsden, AL; Bazilevs, Y.; Hsu, M-C, Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear, Comput Methods Appl Mech Eng, 316, 668-693 (2017) · Zbl 1439.74117 · doi:10.1016/j.cma.2016.09.032
[57] Yan, J.; Deng, X.; Xu, F.; Xu, S.; Zhu, Q., Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows, J Appl Mech (2020) · doi:10.1115/1.4046317
[58] Castorrini, A.; Corsini, A.; Rispoli, F.; Takizawa, K.; Tezduyar, TE, A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery, Math Models Methods Appl Sci, 29, 967-994 (2019) · Zbl 1425.76134 · doi:10.1142/S0218202519410057
[59] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput Fluids, 141, 201-211 (2016) · Zbl 1390.76375 · doi:10.1016/j.compfluid.2015.07.013
[60] Helgedagsrud, TA; Bazilevs, Y.; Mathisen, KM; Oiseth, OA, ALE-VMS methods for wind-resistant design of long-span bridges, J Wind Eng Ind Aerodyn, 191, 143-153 (2019) · doi:10.1016/j.jweia.2019.06.001
[61] Yan, J.; Korobenko, A.; Tejada-Martinez, AE; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Comput Fluids, 158, 150-156 (2017) · Zbl 1390.76107 · doi:10.1016/j.compfluid.2016.12.004
[62] Ravensbergen, M.; Helgedagsrud, TA; Bazilevs, Y.; Korobenko, A., A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains, Comput Methods Appl Mech Eng, 368, 113182 (2020) · Zbl 1506.86010 · doi:10.1016/j.cma.2020.113182
[63] Xu, F.; Moutsanidis, G.; Kamensky, D.; Hsu, M-C; Murugan, M.; Ghoshal, A.; Bazilevs, Y., Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Comput Fluids, 158, 201-220 (2017) · Zbl 1390.76805 · doi:10.1016/j.compfluid.2017.02.006
[64] Bazilevs, Y.; Takizawa, K.; Wu, MCH; Kuraishi, T.; Avsar, R.; Xu, Z.; Tezduyar, TE, Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method, Comput Mech, 67, 57-84 (2021) · Zbl 07360493 · doi:10.1007/s00466-020-01919-w
[65] Codoni, D.; Moutsanidis, G.; Hsu, M-C; Bazilevs, Y.; Johansen, C.; Korobenko, A., Stabilized methods for high-speed compressible flows: toward hypersonic simulations, Comput Mech, 67, 785-809 (2021) · Zbl 1490.76134 · doi:10.1007/s00466-020-01963-6
[66] Bayram, AM; Korobenko, A., Variational multiscale framework for cavitating flows, Comput Mech, 66, 49-67 (2020) · Zbl 1465.76051 · doi:10.1007/s00466-020-01840-2
[67] Cen, H.; Zhou, Q.; Korobenko, A., Variational multiscale framework for cavitating flows, Comput Fluids, 214, 104765 (2021) · Zbl 1521.76322 · doi:10.1016/j.compfluid.2020.104765
[68] Zhu, Q.; Liu, Z.; Yan, J., Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks, Comput Mech, 67, 619-635 (2021) · Zbl 07360521 · doi:10.1007/s00466-020-01952-9
[69] Xu, S.; Liu, N.; Yan, J., Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains, Comput Fluids, 188, 114-124 (2019) · Zbl 1519.76160 · doi:10.1016/j.compfluid.2019.05.008
[70] Yan, J.; Yan, W.; Lin, S.; Wagner, G., A fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidification, Comput Methods Appl Mech Eng, 336, 444-470 (2018) · Zbl 1440.74266 · doi:10.1016/j.cma.2018.03.017
[71] Yan, J.; Lin, SS; Bazilevs, Y.; Wagner, G., Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles, Comput Fluids, 179, 777-789 (2019) · Zbl 1411.76074 · doi:10.1016/j.compfluid.2018.04.017
[72] Zhao, Z.; Zhu, Q.; Yan, J., A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function, Comput Methods Appl Mech Eng, 373, 113518 (2021) · Zbl 1506.74245 · doi:10.1016/j.cma.2020.113518
[73] Zhao, Z.; Yan, J., Variational multi-scale modeling of interfacial flows with a balanced-force surface tension model, Mech Res Commun (2020) · doi:10.1016/j.mechrescom.2020.103608
[74] Zhu, Q.; Xu, F.; Xu, S.; Hsu, M-C; Yan, J., An immersogeometric formulation for free-surface flows with application to marine engineering problems, Comput Methods Appl Mech Eng, 361, 112748 (2020) · Zbl 1442.76019 · doi:10.1016/j.cma.2019.112748
[75] Zhu, Q.; Yan, J.; Tejada-Martínez, A.; Bazilevs, Y., Variational multiscale modeling of Langmuir turbulent boundary layers in shallow water using isogeometric analysis, Mech Res Commun, 108, 103570 (2020) · doi:10.1016/j.mechrescom.2020.103570
[76] Zhu, Q.; Yan, J., A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows, Comput Math Appl, 81, 532-546 (2021) · Zbl 1460.76564 · doi:10.1016/j.camwa.2019.07.034
[77] Hsu, M-C; Wang, C.; Xu, F.; Herrema, AJ; Krishnamurthy, A., Direct immersogeometric fluid flow analysis using B-rep CAD models, Comput Aided Geom Des, 43, 143-158 (2016) · Zbl 1418.76042 · doi:10.1016/j.cagd.2016.02.007
[78] Xu, S.; Xu, F.; Kommajosula, A.; Hsu, M-C; Ganapathysubramanian, B., Immersogeometric analysis of moving objects in incompressible flows, Comput Fluids, 189, 24-33 (2019) · Zbl 1519.76161 · doi:10.1016/j.compfluid.2019.05.018
[79] Xu, S.; Gao, B.; Lofquist, A.; Fernando, M.; Hsu, M-C; Sundar, H.; Ganapathysubramanian, B., An octree-based immersogeometric approach for modeling inertial migration of particles in channels, Comput Fluids, 214, 104764 (2020) · Zbl 1521.76876 · doi:10.1016/j.compfluid.2020.104764
[80] Hsu, M-C; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, MCH; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, MS, Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput Mech, 55, 1211-1225 (2015) · Zbl 1325.74048 · doi:10.1007/s00466-015-1166-x
[81] Kamensky, D.; Hsu, M-C; Yu, Y.; Evans, JA; Sacks, MS; Hughes, TJR, Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines, Comput Methods Appl Mech Eng, 314, 408-472 (2017) · Zbl 1439.76077 · doi:10.1016/j.cma.2016.07.028
[82] Xu, F.; Morganti, S.; Zakerzadeh, R.; Kamensky, D.; Auricchio, F.; Reali, A.; Hughes, TJR; Sacks, MS; Hsu, M-C, A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis, Int J Numer Methods Biomed Eng, 34, e2938 (2018) · doi:10.1002/cnm.2938
[83] Wu, MCH; Zakerzadeh, R.; Kamensky, D.; Kiendl, J.; Sacks, MS; Hsu, M-C, An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves, J Biomech, 74, 23-31 (2018) · doi:10.1016/j.jbiomech.2018.04.012
[84] Wu, MCH; Muchowski, HM; Johnson, EL; Rajanna, MR; Hsu, M-C, Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement, Comput Methods Appl Mech Eng, 357, 112556 (2019) · Zbl 1442.74067 · doi:10.1016/j.cma.2019.07.025
[85] Johnson, EL; Wu, MCH; Xu, F.; Wiese, NM; Rajanna, MR; Herrema, AJ; Ganapathysubramanian, B.; Hughes, TJR; Sacks, MS; Hsu, M-C, Thinner biological tissues induce leaflet flutter in aortic heart valve replacements, Proc Natl Acad Sci, 117, 19007-19016 (2020) · doi:10.1073/pnas.2002821117
[86] Xu, F.; Johnson, EL; Wang, C.; Jafari, A.; Yang, C-H; Sacks, MS; Krishnamurthy, A.; Hsu, M-C, Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement, Mech Res Commun (2021) · doi:10.1016/j.mechrescom.2020.103604
[87] Tezduyar, TE; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int J Numer Methods Fluids, 64, 1201-1218 (2010) · Zbl 1427.76148 · doi:10.1002/fld.2221
[88] Tezduyar, TE; Takizawa, K., Space-time computations in practical engineering applications: a summary of the 25-year history, Comput Mech, 63, 747-753 (2019) · Zbl 1471.76048 · doi:10.1007/s00466-018-1620-7
[89] Takizawa, K.; Montes, D.; Fritze, M.; McIntyre, S.; Boben, J.; Tezduyar, TE, Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math Models Methods Appl Sci, 23, 307-338 (2013) · Zbl 1261.76013 · doi:10.1142/S0218202513400058
[90] Takizawa, K.; Tezduyar, TE; Kolesar, R., FSI modeling of the Orion spacecraft drogue parachutes, Comput Mech, 55, 1167-1179 (2015) · Zbl 1325.74169 · doi:10.1007/s00466-014-1108-z
[91] Takizawa, K.; Tezduyar, TE; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15 (2014) · Zbl 1398.76129 · doi:10.1007/s00466-013-0888-x
[92] Otoguro, Y.; Mochizuki, H.; Takizawa, K.; Tezduyar, TE, Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine, Comput Mech, 66, 1443-1460 (2020) · Zbl 1468.74079 · doi:10.1007/s00466-020-01910-5
[93] Kuraishi, T.; Zhang, F.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework, Comput Mech, 68, 113-130 (2021) · Zbl 1480.76075 · doi:10.1007/s00466-021-02022-4
[94] Kuraishi, T.; Zhang, F.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution, Comput Mech, 68, 175-184 (2021) · Zbl 1496.76086 · doi:10.1007/s00466-021-02025-1
[95] Zhang, F.; Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the ST-VMS method and isogeometric discretization: directional preference in spatial refinement, Comput Mech, 1, 1 (2022) · Zbl 1502.76081 · doi:10.1007/s00466-021-02129-8
[96] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, TE, Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput Mech, 50, 743-760 (2012) · Zbl 1286.76179 · doi:10.1007/s00466-012-0759-x
[97] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, TE, Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput Mech, 50, 761-778 (2012) · Zbl 1286.76180 · doi:10.1007/s00466-012-0758-y
[98] Takizawa, K.; Tezduyar, TE; Buscher, A., Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput Mech, 55, 1131-1141 (2015) · doi:10.1007/s00466-014-1095-0
[99] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Long, CC; Marsden, AL; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math Models Methods Appl Sci, 24, 2437-2486 (2014) · Zbl 1296.76113 · doi:10.1142/S0218202514500250
[100] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, TE, Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput Mech, 50, 675-686 (2012) · Zbl 1311.76157 · doi:10.1007/s00466-012-0760-4
[101] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, TE, Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput Mech, 51, 1061-1073 (2013) · Zbl 1366.76106 · doi:10.1007/s00466-012-0790-y
[102] Suito, H.; Takizawa, K.; Huynh, VQH; Sze, D.; Ueda, T.; Tezduyar, TE; Bazilevs, Y.; Takizawa, K., A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta, Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology, 379-386 (2016), Berlin: Springer, Berlin · Zbl 1356.76471 · doi:10.1007/978-3-319-40827-9_29
[103] Takizawa, K.; Tezduyar, TE; Uchikawa, H.; Terahara, T.; Sasaki, T.; Shiozaki, K.; Yoshida, A.; Komiya, K.; Inoue, G.; Tezduyar, TE, Aorta flow analysis and heart valve flow and structure analysis, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology, 29-89 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_2
[104] Takizawa, K.; Tezduyar, TE; Uchikawa, H.; Terahara, T.; Sasaki, T.; Yoshida, A., Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization, Comput Fluids, 179, 790-798 (2019) · Zbl 1411.76184 · doi:10.1016/j.compfluid.2018.05.025
[105] Terahara, T.; Takizawa, K.; Tezduyar, TE; Tsushima, A.; Shiozaki, K., Ventricle-valve-aorta flow analysis with the space-time isogeometric discretization and topology change, Comput Mech, 65, 1343-1363 (2020) · Zbl 1465.76118 · doi:10.1007/s00466-020-01822-4
[106] Takizawa, K.; Tezduyar, TE; Bazilevs, Y.; Takizawa, K., New directions in space-time computational methods, Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology, 159-178 (2016), Berlin: Springer, Berlin · Zbl 1356.76291 · doi:10.1007/978-3-319-40827-9_13
[107] Terahara, T.; Takizawa, K.; Tezduyar, TE; Bazilevs, Y.; Hsu, M-C, Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method, Comput Mech, 65, 1167-1187 (2020) · Zbl 1462.74119 · doi:10.1007/s00466-019-01813-0
[108] Takizawa, K.; Terahara, T.; Tezduyar, TE, Space-time flow computation with contact between the moving solid surfaces (2020), Berlin: Springer, Berlin
[109] Takizawa, K.; Montes, D.; McIntyre, S.; Tezduyar, TE, Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math Models Methods Appl Sci, 23, 223-248 (2013) · Zbl 1261.76037 · doi:10.1142/s0218202513400022
[110] Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: IOP conference series earth and environmental science, vol 240, pp 062014. doi:10.1088/1755-1315/240/6/062014 · Zbl 1425.76139
[111] Kanai, T.; Takizawa, K.; Tezduyar, TE; Komiya, K.; Kaneko, M.; Hirota, K.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Methods for computation of flow-driven string dynamics in a pump and residence time, Math Models Methods Appl Sci, 29, 839-870 (2019) · Zbl 1425.76139 · doi:10.1142/S021820251941001X
[112] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, A general-purpose NURBS mesh generation method for complex geometries, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology, 399-434 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_10
[113] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Nagaoka, K.; Avsar, R.; Zhang, Y., Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle, Comput Mech, 64, 1403-1419 (2019) · Zbl 1467.76044 · doi:10.1007/s00466-019-01722-2
[114] Kuraishi, T.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology, 337-376 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_8
[115] Tezduyar, TE; Takizawa, K.; Kuraishi, T., Space-time computational FSI and flow analysis: 2004 and beyond (2020), Berlin: Springer, Berlin
[116] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Space-time isogeometric flow analysis with built-in Reynolds-equation limit, Math Models Methods Appl Sci, 29, 871-904 (2019) · Zbl 1425.76142 · doi:10.1142/S0218202519410021
[117] Takizawa, K.; Tezduyar, TE; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 141, 191-200 (2016) · Zbl 1390.76359 · doi:10.1016/j.compfluid.2016.05.027
[118] Takizawa, K.; Tezduyar, TE; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math Models Methods Appl Sci, 27, 771-806 (2017) · Zbl 1361.76017 · doi:10.1142/S0218202517500166
[119] Kanai, T.; Takizawa, K.; Tezduyar, TE; Tanaka, T.; Hartmann, A., Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput Mech, 63, 301-321 (2019) · Zbl 1462.76145 · doi:10.1007/s00466-018-1595-4
[120] Aydinbakar, L.; Takizawa, K.; Tezduyar, TE; Matsuda, D., U-duct turbulent-flow computation with the ST-VMS method and isogeometric discretization, Comput Mech, 67, 823-843 (2021) · Zbl 1490.76171 · doi:10.1007/s00466-020-01965-4
[121] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 10, 27-36 (1993) · Zbl 0875.76267 · doi:10.1109/2.237441
[122] Aydinbakar, L.; Takizawa, K.; Tezduyar, TE; Kuraishi, T., Space-time VMS isogeometric analysis of the Taylor-Couette flow, Comput Mech, 67, 1515-1541 (2021) · Zbl 1468.76050 · doi:10.1007/s00466-021-02004-6
[123] Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol. 246/AMD-Vol. 143. ASME, New York, pp 7-24
[124] Takizawa, K.; Tezduyar, TE; Avsar, R., A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state, Comput Mech, 65, 1567-1591 (2020) · Zbl 1464.74369 · doi:10.1007/s00466-020-01835-z
[125] Tonon, P.; Sanches, RAK; Takizawa, K.; Tezduyar, TE, A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion, Comput Mech, 67, 413-434 (2021) · Zbl 07360511 · doi:10.1007/s00466-020-01941-y
[126] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis, Arch Comput Methods Eng, 26, 1059-1099 (2019) · doi:10.1007/s11831-018-9292-1
[127] Takizawa, K.; Tezduyar, TE; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput Fluids, 142, 109-117 (2017) · Zbl 1390.76011 · doi:10.1016/j.compfluid.2016.02.019
[128] Otoguro, Y.; Takizawa, K.; Tezduyar, TE, Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput Fluids, 158, 189-200 (2017) · Zbl 1390.76345 · doi:10.1016/j.compfluid.2017.04.017
[129] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Nagaoka, K.; Mei, S., Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis, Comput Fluids, 179, 764-776 (2019) · Zbl 1411.76070 · doi:10.1016/j.compfluid.2018.05.019
[130] Takizawa, K.; Tezduyar, TE; Asada, S.; Kuraishi, T., Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput Fluids, 141, 124-134 (2016) · Zbl 1390.76358 · doi:10.1016/j.compfluid.2016.05.006
[131] Tezduyar, TE; Aliabadi, SK; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput Methods Appl Mech Eng, 119, 157-177 (1994) · Zbl 0848.76040 · doi:10.1016/0045-7825(94)00082-4
[132] Takizawa, K., Computational engineering analysis with the new-generation space-time methods, Comput Mech, 54, 193-211 (2014) · doi:10.1007/s00466-014-0999-z
[133] Hughes, TJR; Cottrell, JA; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[134] Takizawa, K.; Tezduyar, TE, Space-time computation techniques with continuous representation in time (ST-C), Comput Mech, 53, 91-99 (2014) · doi:10.1007/s00466-013-0895-y
[135] Takizawa, K.; Tezduyar, TE; Sasaki, T.; Wriggers, P.; Lenarz, T., Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization, Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics, 101-122 (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-59548-1_7
[136] Takizawa, K.; Tezduyar, TE; Sasaki, T., Aorta modeling with the element-based zero-stress state and isogeometric discretization, Comput Mech, 59, 265-280 (2017) · doi:10.1007/s00466-016-1344-5
[137] Sasaki, T.; Takizawa, K.; Tezduyar, TE, Medical-image-based aorta modeling with zero-stress-state estimation, Comput Mech, 64, 249-271 (2019) · Zbl 1469.74085 · doi:10.1007/s00466-019-01669-4
[138] Takizawa, K.; Tezduyar, TE; Sasaki, T., Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping, Comput Mech, 63, 681-700 (2019) · Zbl 1464.74107 · doi:10.1007/s00466-018-1616-3
[139] Bazilevs, Y.; Hsu, M-C; Kiendl, J.; Benson, DJ, A computational procedure for pre-bending of wind turbine blades, Int J Numer Methods Eng, 89, 323-336 (2012) · Zbl 1242.74026 · doi:10.1002/nme.3244
[140] Bazilevs, Y.; Deng, X.; Korobenko, A.; di Scalea, FL; Todd, MD; Taylor, SG, Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data, J Appl Mech, 82, 091008 (2015) · doi:10.1115/1.4030795
[141] Kiendl, J.; Hsu, M-C; Wu, MCH; Reali, A., Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput Methods Appl Mech Eng, 291, 280-303 (2015) · Zbl 1423.74177 · doi:10.1016/j.cma.2015.03.010
[142] Hsu, M-C; Wang, C.; Herrema, AJ; Schillinger, D.; Ghoshal, A.; Bazilevs, Y., An interactive geometry modeling and parametric design platform for isogeometric analysis, Comput Math Appl, 70, 1481-1500 (2015) · Zbl 1443.65020 · doi:10.1016/j.camwa.2015.04.002
[143] Herrema, AJ; Wiese, NM; Darling, CN; Ganapathysubramanian, B.; Krishnamurthy, A.; Hsu, M-C, A framework for parametric design optimization using isogeometric analysis, Comput Methods Appl Mech Eng, 316, 944-965 (2017) · Zbl 1439.74258 · doi:10.1016/j.cma.2016.10.048
[144] Benzaken, J.; Herrema, AJ; Hsu, M-C; Evans, JA, A rapid and efficient isogeometric design space exploration framework with application to structural mechanics, Comput Methods Appl Mech Eng, 316, 1215-1256 (2017) · Zbl 1439.65146 · doi:10.1016/j.cma.2016.12.026
[145] Kamensky, D.; Xu, F.; Lee, C-H; Yan, J.; Bazilevs, Y.; Hsu, M-C, A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves, Comput Methods Appl Mech Eng, 330, 522-546 (2018) · Zbl 1439.74224 · doi:10.1016/j.cma.2017.11.007
[146] Herrema, AJ; Johnson, EL; Proserpio, D.; Wu, MCH; Kiendl, J.; Hsu, M-C, Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades, Comput Methods Appl Mech Eng, 346, 810-840 (2019) · Zbl 1440.74400 · doi:10.1016/j.cma.2018.08.038
[147] Herrema, AJ; Kiendl, J.; Hsu, M-C, A framework for isogeometric-analysis-based optimization of wind turbine blade structures, Wind Energy, 22, 153-170 (2019) · doi:10.1002/we.2276
[148] Johnson, EL; Hsu, M-C, Isogeometric analysis of ice accretion on wind turbine blades, Comput Mech, 66, 311-322 (2020) · Zbl 1466.74051 · doi:10.1007/s00466-020-01852-y
[149] Takizawa, K.; Fritze, M.; Montes, D.; Spielman, T.; Tezduyar, TE, Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput Mech, 50, 835-854 (2012) · doi:10.1007/s00466-012-0761-3
[150] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C; Øiseth, O.; Mathisen, KM; Kostov, N.; McIntyre, S., Engineering analysis and design with ALE-VMS and space-time methods, Arch Comput Methods Eng, 21, 481-508 (2014) · Zbl 1348.74104 · doi:10.1007/s11831-014-9113-0
[151] Takizawa, K.; Tezduyar, TE; Boswell, C.; Kolesar, R.; Montel, K., FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes, Comput Mech, 54, 1203-1220 (2014) · doi:10.1007/s00466-014-1052-y
[152] Takizawa, K.; Tezduyar, TE; Kolesar, R.; Boswell, C.; Kanai, T.; Montel, K., Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes, Comput Mech, 54, 1461-1476 (2014) · Zbl 1309.74025 · doi:10.1007/s00466-014-1069-2
[153] Takizawa, K.; Tezduyar, TE; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput Mech, 55, 1059-1069 (2015) · doi:10.1007/s00466-014-1074-5
[154] Takizawa, K.; Takagi, H.; Tezduyar, TE; Torii, R., Estimation of element-based zero-stress state for arterial FSI computations, Comput Mech, 54, 895-910 (2014) · Zbl 1398.74096 · doi:10.1007/s00466-013-0919-7
[155] Takizawa, K.; Torii, R.; Takagi, H.; Tezduyar, TE; Xu, XY, Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates, Comput Mech, 54, 1047-1053 (2014) · Zbl 1311.76158 · doi:10.1007/s00466-014-1049-6
[156] Sasaki, T.; Takizawa, K.; Tezduyar, TE, Aorta zero-stress state modeling with T-spline discretization, Comput Mech, 63, 1315-1331 (2019) · Zbl 1465.74125 · doi:10.1007/s00466-018-1651-0
[157] Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD-vol 34. ASME, New York, pp 19-35 · Zbl 0423.76067
[158] Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA. http://www.researchgate.net/publication/24313718/
[159] Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA Paper 83-0125, Reno, Nevada. doi:10.2514/6.1983-125
[160] Hughes, TJR; Tezduyar, TE, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput Methods Appl Mech Eng, 45, 217-284 (1984) · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[161] Hughes, TJR; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput Methods Appl Mech Eng, 54, 341-355 (1986) · Zbl 0622.76074 · doi:10.1016/0045-7825(86)90110-6
[162] Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307-325. doi:10.1016/0045-7825(86)90003-4 · Zbl 0593.76096
[163] Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411-430. doi:10.1016/S0045-7825(00)00211-5 · Zbl 0973.76057
[164] Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001 (CD-ROM), Swansea, Wales, UK
[165] Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics, Volume 3: fluids, Chap. 17. Wiley, Hoboken. doi:10.1002/0470091355.ecm069 · Zbl 1130.76369
[166] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, TE; Hsu, M-C; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657 (2011) · Zbl 1334.74032 · doi:10.1007/s00466-011-0614-5
[167] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, TE; Bazilevs, Y.; Takizawa, K., SUPG/PSPG computational analysis of rain erosion in wind-turbine blades, Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology, 77-96 (2016), Berlin: Springer, Berlin · Zbl 1356.76160 · doi:10.1007/978-3-319-40827-9_7
[168] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, TE, Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion, Comput Mech, 64, 1133-1153 (2019) · Zbl 1467.74083 · doi:10.1007/s00466-019-01697-0
[169] Takizawa, K.; Tezduyar, TE; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput Mech, 62, 1169-1186 (2018) · Zbl 1462.76128 · doi:10.1007/s00466-018-1557-x
[170] Takizawa, K.; Ueda, Y.; Tezduyar, TE, A node-numbering-invariant directional length scale for simplex elements, Math Models Methods Appl Sci, 29, 2719-2753 (2019) · doi:10.1142/S0218202519500581
[171] Otoguro Y, Takizawa K, Tezduyar TE (2020) Element length calculation in B-spline meshes for complex geometries. Comput Mech 65:1085-1103. doi:10.1007/s00466-019-01809-w · Zbl 1462.76148
[172] Ueda, Y.; Otoguro, Y.; Takizawa, K.; Tezduyar, TE, Element-splitting-invariant local-length-scale calculation in B-spline meshes for complex geometries, Math Models Methods Appl Sci, 30, 2139-2174 (2020) · Zbl 1451.65140 · doi:10.1142/S0218202520500402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.