×

Optimization of the Richardson integration over fluctuations of its step sizes. (English) Zbl 1427.65032

Summary: In this paper, we examine the optimization of Richardson numerical integration of an arbitrary real valued function in the space of step sizes. Namely, as one of the most efficient numerical integrations of an integrable function, the Richardson method is optimized under the variations of its step sizes. Subsequently, we classify the stability domains of the Richardson integration of real valued functions. We discuss stability criteria of the Richardson integration via the sign of the fluctuation discriminant as a quintic or lower degree polynomials as a function of the step size parameter. As special cases, our proposal optimizes the trapezoidal, Romberg and other numerical integrations. Hereby, we consider the optimization of the Richardson schemes as a weighted estimation in the light of extrapolation techniques. Finally, optimal Richardson integrations are discussed towards prospective theoretical and experimental applications and their industrial counterparts.

MSC:

65D30 Numerical integration

Software:

HYPERDIRE; CLUMPP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agrawal, M.; Biswas, S., Primality and identity testing via Chinese remaindeing, Journal of the ACM (JACM), 50, 4, 429-36 (2003) · Zbl 1325.68253
[2] Alekseev, V. B., Abels theorem in problems and solutions: Based on the lectures of professor VI Arnold (2004), Springer Science & Business Media · Zbl 1065.12001 · doi:10.1007/1-4020-2187-9
[3] Angelis, C. D., Self-trapped propagation in the nonlinear cubic-quintic Schrodinger equation: A variational approach, IEEE Journal of Quantum Electronics, 30, 3, 818-821 (1994) · doi:10.1109/3.286174
[4] Artin, E., Algebra with Galois theory, 15 (2007), American Mathematical Soc · Zbl 1131.12001
[5] Asmussen, S.; Albrecher, H., Ruin probabilities (2010), World Scientific Publishing Co Pte Ltd, Singapore, ISBN13: 9789814282529 · Zbl 1247.91080
[6] Bao-Quan, A.; Wang, X.-J.; Liu, G.-T.; Wen, D.-H.; Xie, H.-Z.; Chen, W.; Liu, L. G., Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations, Physical Review E, 68, 6, 061105 (2003) · doi:10.1103/PhysRevE.68.061105
[7] Battaglia, M.; Berge, J.; Case, S.; Yoobin, J.; Ryoo, J.; Wichrowski, N., AMSC460/CMSC460: Computational methods group project 4: Extrapolation in numerical integration (2015)
[8] Bauer, F. L.; Rutishauser, H.; Stiefel, E., New aspects in numerical quadrature, Proceedings of Symposia in Applied Mathematics, 15, 199-218 (1963) · Zbl 0133.09201
[9] Bauer, P.; Thorpe, A.; Brunet, G., The quiet revolution of numerical weather prediction, Nature, 525, 7567, 47 (2015) · doi:10.1038/525S9a
[10] Bellucci, S.; Tiwari, B. N.; Gupta, N., Geometrical methods for power network analysis (2012), Springer Science & Business Media · Zbl 1314.53008 · doi:10.1007/978-3-642-33344-6
[11] Blum, H.; Lin, Q.; Rannacher, R., Asymptotic error expansion and Richardson extranpolation for linear finite elements, Numerische Mathematik, 49, 1, 11-37 (1986) · Zbl 0594.65082 · doi:10.1007/BF01389427
[12] Bousquet, O.; Elisseeff, A., Stability and generalization, J. Mach. Learn. Res., 2, 499-526 (2002) · Zbl 1007.68083
[13] Bytev, V. V.; Kniehl, B. A., HYPERDIRE - HYPERgeometric functions dIfferential rEduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function F_C of three variables, Computer Physics Communications, 206, 78-83 (2016) · Zbl 1375.33002 · doi:10.1016/j.cpc.2016.04.016
[14] Cabrera, S. D.; Parks, T. W., Extrapolation and spectral estimation with iterative weighted norm modification, IEEE Transactions on Signal Processing, 39, 4, 842-851 (1991) · doi:10.1109/78.80906
[15] Candelas, P.; Xenia, C.; Green, P. S.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Physics B, 359, 1, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[16] Castan˜eda, P. P., Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: Itheory, Journal of the Mechanics and Physics of Solids, 50, 4, 737-757 (2002) · Zbl 1116.74412 · doi:10.1016/S0022-5096(01)00099-0
[17] Celik, I.; Karatekin, O., Numerical experiments on application of Richardson extrapolation with nonuniform grids, Journal of Fluids Engineering, 119, 3, 584-590 (1997)
[18] Changpin, L.; Zeng, F., Numerical methods for fractional calculus (2015), Chapman and Hal- l/CRC, Taylor & Francis · Zbl 1326.65033
[19] Chapra, S. C.; Canale, R. P., Numerical methods for engineers, 2 (1998), New York: Mcgraw- hill, New York
[20] Chen, X.; Diez, M.; Kandasamy, M.; Zhang, Z.; Campana, E. F.; Stern, F., High-fidelity global optimization of shape design by dimensionality reduction, metamodels and deterministic particle swarm, Engineering Optimization, 47, 4, 473-494 (2015) · doi:10.1080/0305215X.2014.895340
[21] Choie, Y.; Park, Y. K.; Zagier, D., Periods of modular forms on Γ 0(N)and products of Jacobi theta functions, arXiv preprint arXiv:1706.07885 (2017)
[22] Ciarlet, P. G., Handbook of numerical analysis, 8, 650 (2001), Amsterdam: Elsevier. ISBN: 9780444509062
[23] Clarkson, P. A., Applications of analytic and geometric methods to nonlinear differential equations, 413 (1993), Springer Science & Business Media · Zbl 0781.00011 · doi:10.1007/978-94-011-2082-1
[24] Clemens, H., Some results about Abel-Jacobi mappings, Topics in Transcendental Algebraic Geometry, 106, 289-304 (1984) · Zbl 0575.14007
[25] Cöster, K.; Schmidt, K. P., Extracting critical exponents for sequences of numerical data via series extrapolation techniques, Physical Review E, 94, 2, 022101 (2016) · doi:10.1103/PhysRevE.94.022101
[26] Cotterill, E., Rational curves of degree 11 on a general quintic 3-fold, Quarterly Journal of Mathematics, 63, 3, 539-568 (2012) · Zbl 1260.14046 · doi:10.1093/qmath/har001
[27] Courtier, N. E.; Richardson, G.; Foster, J. M., A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells, Applied Mathematical Modelling, 63, 329-348 (2018) · Zbl 1480.82018 · doi:10.1016/j.apm.2018.06.051
[28] Cox, D. A.; Katz, S., Mirror symmetry and algebraic geometry, 68 (1999), American Mathematical Society · Zbl 0951.14026
[29] Deb, K. (2005) Multi-Objective Optimization. In Burke, E.K., & Kendall, G. (Eds.), Search Methodologies. Springer, Boston, MA, USA. Online ISBN: 978-0-387-28356-2. doi: . · Zbl 1109.68592
[30] Diez, M.; Chen, X.; Campana, E. F.; Stern, F., Reliability-based robust design optimization for ships in real ocean environment (2013)
[31] Dimov, I.; Zlatev, Z.; Faragó, Richardson extrapolation: Practical aspects and applications, 2 (2017), Walter de Gruyter GmbH & Co KG (ASIN: B06Y65J6ZT)
[32] Faragó, I.; Havasi, Á.; Zlatev, Z., Efficient implementation of stable Richardson extrapolation algorithms, Computers & Mathematics with Applications, 60, 8, 2309-2325 (2010) · Zbl 1205.65014 · doi:10.1016/j.camwa.2010.08.025
[33] Farb, B.; Wolfson, J., Resolvent degree, Hilbert’s 13th problem and geometry, arXiv preprint arXiv:1803.04063 (2018) · Zbl 1460.14104
[34] Feller, W.; Schilling, R.; Vondraček, Z.; Woyczyński, W., Fluctuation Theory Of Recurrent Events (2015) · doi:10.1007/978-3-319-16859-3_43
[35] Gao, G.-H.; Sun, Z.-Z.; Zhang, H.-W., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, Journal of Computational Physics, 259, 33-50 (2014) · Zbl 1349.65088 · doi:10.1016/j.jcp.2013.11.017
[36] Gray, J., Revision and first assignment, Chapter in The Book– a History of Abstract Algebra, from Algebraic Equations to Modern Algebra. Springer International Publishing (Ebook (2018) · Zbl 1411.01005 · doi:10.1007/978-3-319-94773-0
[37] Guerra-Gómez, I.; Tlelo-Cuautle, E.; Luis, G., Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits, Applied Mathematics and Computation, 222, 167-176 (2013) · Zbl 1329.90181 · doi:10.1016/j.amc.2013.07.059
[38] Gupta, N.; Tiwari, B. N.; Bellucci, S., Intrinsic geometric analysis of the network reliability and voltage stability, International Journal of Electrical Power & Energy Systems, 44, 1, 872-879 (2013) · doi:10.1016/j.ijepes.2012.08.032
[39] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, 31 (2006), Springer Science & Business Media · Zbl 1094.65125 · doi:10.1007/3-540-30666-8
[40] Harkey, J. A.; Kenny, T. W., 1/f noise considerations for the design and process optimization of piezoresistive cantilevers, Journal of Microelectromechanical Systems, 9, 2, 226-235 (2000) · doi:10.1109/84.846703
[41] Huang, G.; Song, S.; Gupta, J. N. D.; Cheng, W., Semi-supervised and unsupervised extreme learning machines, IEEE Transactions on Cybernetics, 44, 12, 2405-2417 (2014) · doi:10.1109/TCYB.2014.2307349
[42] Hundsdorfer, W.; Verwer, J. G., Numerical solution of time-dependent advection-diffusion- reaction equations, 33 (2013), Springer Science & Business Media · doi:10.1007/978-3-662-09017-6
[43] Igoe, W. B., Application of Richardson’s extrapolation to numerical evaluation of sonic-boom integrals (1967)
[44] Jakobsson, M.; Rosenberg, N. A., CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, 23, 14, 1801-1806 (2007) · doi:10.1093/bioinformatics/btm233
[45] Johnsen, T.; Kleiman, S. L., Rational curves of degree at most 9 on a general quintic threefold, Communications in Algebra, 24, 8, 2721-2753 (1996) · Zbl 0860.14038 · doi:10.1080/00927879608542652
[46] Kalogiratou, Z.; Monovasilis, T.; Psihoyios, G. Y.; Simos, T. E., Runge-Kutta type methods with special properties for the numerical integration of ordinary differential equations, Physics Reports, 536, 3, 75-146 (2014) · Zbl 1360.65194 · doi:10.1016/j.physrep.2013.11.003
[47] Kappe, L.-C.; Warren, B., An elementary test for the Galois group of a quartic polynomial, The American Mathematical Monthly, 96, 2, 133-137 (1989) · Zbl 0702.11075 · doi:10.1080/00029890.1989.11972158
[48] Kaw, A., & Krivanek, J. (2018). Measuring errors, 01.02, Holistic numerical methods, transforming numerical education for the STEM undergraduate. The University of South Florida, Florida, USA
[49] Keller, H. B., Numerical methods for two-point boundary-value problems (2018), Courier Dover Publications · Zbl 1409.65001
[50] Khargonekar, P. P.; Petersen, I. R.; Zhou, K., Robust stabilization of uncertain linear systems: Quadratic stabilizability and H/sup infinity/control theory, IEEE Transactions on Automatic Control, 35, 3, 356-361 (1990) · Zbl 0707.93060 · doi:10.1109/9.50357
[51] Kincaid, D.; Kincaid, D. R.; Cheney, E. W., Numerical analysis: Mathematics of scientific computing, 2 (2009), American Mathematical Soc · Zbl 1222.65001
[52] Kiusalaas, J., Numerical methods in engineering with Python 3 (2013), Cambridge university press · Zbl 1270.65001
[53] Kozioł, A.; Wiśniewski, R., Optimization of the quintic equation of the state based model for the calculations of different thermodynamic properties, Polish Journal of Chemical Technology, 10, 1, 6-10 (2008) · doi:10.2478/v10026-008-0002-x
[54] Křížek, M.; Pekka, N., On superconvergence techniques, Acta Applicandae Mathematica, 9, 3, 175-198 (1987) · Zbl 0624.65107 · doi:10.1007/BF00047538
[55] Křížek, M.; Somer, L., Why quintic polynomial equations are not solvable in radicals, Application of Mathematics, 2015, 125-131 (2015) · Zbl 1374.12005
[56] Kuipo, J. K.; Tiwari, B. N.; Gupta, N.; Khosravy, M.; Bellucci, S.; Marina, N., An introduction to dynamic optical optimization (2016) · doi:10.13189/ujes.2016.040302
[57] Kushner, H. J., Stochastic stability and control, Technical report (1967), BROWN UNIV PROVIDENCE RI · Zbl 0244.93065
[58] Lambers, J. V.; Sumner, A. C., Explorations in numerical analysis (2016), University of California at Irvine
[59] Lambert, J. D., Numerical methods for ordinary differential systems: The initial value problem (1991), John Wiley & Sons, Inc · Zbl 0745.65049
[60] Lamberton, D.; Lapeyre, B., Introduction to stochastic calculus applied to finance (2011), Chapman and Hall/CRC, Taylor & Francis · Zbl 0898.60002
[61] Lazard, D., Quantifier elimination: Optimal solution for two classical examples, Journal of Symbolic Computation, 5, 1-2, 261-266 (1988) · Zbl 0647.03023 · doi:10.1016/S0747-7171(88)80015-4
[62] Lei, X.; Chengjun, W.; Chen, P., Optimizing parameter of particle damping based on Leidenfrost effect of particle flows, Mechanical Systems and Signal Processing, 104, 60-71 (2018) · doi:10.1016/j.ymssp.2017.10.037
[63] Little, R. J. A.; Rubin, D. B., Statistical analysis with missing data, 333 (2014), John Wiley & Sons
[64] Liu, E. H., Fundamental methods of numerical extrapolation with applications, Mitopencourse- Ware, Massachusetts Institute of Technology, 209, 2, 022101 (2006)
[65] Maharani, M.; Salhi, A.; Suharto, R. A., Enhancing the stability of Lanczos- type algorithms by embedding interpolation and extrapolation for the solution of systems of linear equations, Journal of Mathematical and Fundamental Sciences, 50, 2, 148-165 (2018) · doi:10.5614/j.math.fund.sci.2018.50.2.4
[66] Marino, R., Adaptive control of nonlinear systems: Basic results and applications, Annual Reviews in Control, 21, 55-66 (1997) · doi:10.1016/S1367-5788(97)00033-3
[67] Mason, B. J., Numerical weather prediction, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 407, 1832, 51-60 (1986) · doi:10.1098/rspa.1986.0083
[68] Mona, T.; Lagzi, I.; Havasi, Á., Solving reaction-diffusion and advection problems with Richardson extrapolation (pp. 9), Journal of Chemistry, 2015 (2015) · doi:10.1155/2015/350362
[69] Nickalls, R. W. D., A new approach to solving the cubic: Cardans solution revealed, The Mathematical Gazette, 77, 480, 354-359 (1993) · doi:10.2307/3619777
[70] Oraby, T.; Sivaganesan, S.; Bowman, J. D.; Kincl, L.; Richardson, L.; McBride, M.; Krewski, D., Berkson error adjustment and other exposure surrogates in occupational case-control studies, with application to the Canadian INTEROCC study, Journal of Exposure Science and Environmental Epidemiology, 28, 3, 251 (2018) · doi:10.1038/jes.2017.2
[71] Ott, E., Chaos in dynamical systems (2002), Cambridge university press · Zbl 1006.37001 · doi:10.1017/CBO9780511803260
[72] Ouannas, A.; Odibat, Z., Generalized synchronization of different dimensional chaotic dynamical systems in discrete time, Nonlinear Dynamics, 81, 1-2, 765-771 (2015) · Zbl 1347.34086 · doi:10.1007/s11071-015-2026-0
[73] Parikh, N.; Boyd, S., Proximal algorithms, Foundations and Trends in Optimization, 1, 3, 127-239 (2014) · doi:10.1561/2400000003
[74] Podlubny, I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 198 (1998), Elsevier · Zbl 0922.45001
[75] Ramirez, M.; Scala, E.; Haslum, P.; Thiebaux, S., Numerical integration and dynamic discretization in heuristic search planning over hybrid domains, arXiv preprint arXiv:1703.04232 (2017)
[76] Rees, E. L., Graphical discussion of the roots of a quartic equation, The American Mathematical Monthly, 29, 2, 51-55 (1922) · JFM 48.0091.03 · doi:10.1080/00029890.1922.11986100
[77] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust numerical methods for singularly perturbed differential equations: Convection-diffusion-reaction and flow problems, 24 (2008) · Zbl 1155.65087
[78] Ruffini, P., Teoria generale delle equazioni: In cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grad superiore al quarto, 1 (1799), Nella stamperia di ST d’Aquino
[79] Ruppeiner, G., Riemannian geometry in thermodynamic fluctuation theory, Reviews of Modern Physics, 67, 3, 605 (1995) · doi:10.1103/RevModPhys.67.605
[80] Ruyer-Quil, C.; Manneville, P., Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations, Physics of Fluids, 14, 1, 170-183 (2002) · Zbl 1184.76467 · doi:10.1063/1.1426103
[81] Saitou, K.; Izui, K.; Nishiwaki, S.; Papalambros, P., A survey of structural optimization in mechanical product development, Journal of Computing and Information Science in Engineering, 5, 3, 214-226 (2005) · doi:10.1115/1.2013290
[82] Samoradnitsky, G., Stable non-Gaussian random processes: Stochastic models with infinite variance (2017), Routledge
[83] Schmidt, J. W.; Henrici, P., Discrete variable methods in ordinary differential equations. XI+ 407 S. m. Abb. u. Tab. New York/London 1962. John Wiley & Sons, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 46, 5, 327-328 (1966) · doi:10.1002/zamm.19660460521
[84] Skoruppa, N., Explicit methods in the theory of Jacobi forms of lattice index and over number fields (2015)
[85] Stoer, J.; Bulirsch, R., Introduction to numerical analysis, 12 (2013), Springer Science & Business Media · Zbl 0423.65002
[86] Tiwari, B. N., Sur les corrections de la géométrie thermodynamique des trous noirs (2008)
[87] Tiwari, B. N., Geometric perspective of entropy function: Embedding, spectrum and convexity (2011), LAP LAMBERT Academic Publishing
[88] Tiwari, B. N., On generalized uncertainty principle, arXiv preprint arXiv:0801.3402 (2011), LAP LAMBERT Academic Publishing
[89] Tiwari, B. N.; Kuipo, J. K.; Bellucci, S.; Marina, N., On extensions of the optical optimization, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 26, 1, 302-313 (2016)
[90] Wen, C.-K.; Wang, C.-J.; Jin, S.; Wong, K.-K.; Ting, P., Bayes-optimal joint channel-and-data estimation for massive MIMO with low-precision ADCs, IEEE Transactions on Signal Processing, 64, 10, 2541-2556 (2016) · Zbl 1414.94670 · doi:10.1109/TSP.2015.2508786
[91] Xie, X.-F.; Zhang, W.-J.; Yang, Z.-L., Dissipative particle swarm optimization, 2, 1456-1461 (2002), IEEE
[92] Xing, T.; Stern, F., Factors of safety for Richardson extrapolation, Journal of Fluids Engineering, 132, 6, 061403 (2010) · doi:10.1115/1.4001771
[93] Zhi-Sheng, Y.; Xie, M., Stochastic modelling and analysis of degradation for highly reliable products, Applied Stochastic Models in Business and Industry, 31, 1, 16-32 (2015) · doi:10.1002/asmb.2063
[94] Zimmermann, H.-J., Description and optimization of fuzzy systems, International Journal of General System, 2, 1, 209-215 (1975) · Zbl 0338.90055 · doi:10.1080/03081077508960870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.