×

On almost hyper-para-Kähler manifolds. (English) Zbl 1239.53039

Summary: In this paper it is shown that a \(2n\)-dimensional almost symplectic manifold \((M, \omega)\) can be endowed with an almost paracomplex structure \(K, K^2 = \text{Id}_{TM}\), and an almost complex structure \(J, J^2 = -\text{Id}_{TM}\), satisfying \(\omega(JX, JY) = \omega(X, Y) = -\omega(KX, KY)\) for \(X, Y \in TM, \omega(X, JX) > 0\) for \(X \neq 0\) and \(KJ = -JK\), if and only if the structure group of \(TM\) can be reduced from \(Sp(2n)\) (or \(U(n)\)) to \(O(n)\). In the symplectic case such a manifold \((M, \omega, J, K)\) is called an almost hyper-para-Kähler manifold. Topological and metric properties of almost hyper-para-Kähler manifolds as well as integrability of \((J, K)\) are discussed. It is especially shown that the Pontrjagin classes of the eigenbundles \(P_\pm\) of \(K\) to the eigenvalues \(\pm 1\) depend only on the symplectic structure and not on the choice of \(K\).

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53D05 Symplectic manifolds (general theory)
32Q15 Kähler manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Weinstein, Lectures on Symplectic Manifolds, vol. 29 of Regional Conference Series in Math, American Mathematical Society, 1977, Conference Board of the Mathematical Sciences. Regional Conference. · Zbl 0406.53031
[2] N. M. J. Woodhouse, Geometric Quantization, The Clarendon Press, 2nd edition, 1992. · Zbl 0747.58004
[3] G. Giachetta, L. Mangiarotti, and G. Sardanashvily, Geometric Formulation of Classical and Quantum Mechanics, World Scientific, 2011. · Zbl 1244.70003
[4] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, vol. 203 of Progress in Mathematics, Birkhäuser, Boston, Mass, USA, 2nd edition, 2010. · Zbl 1246.53001 · doi:10.1007/978-0-8176-4959-3
[5] V. Cruceanu, P. Fortuny, and P. M. Gadea, “A survey on paracomplex geometry,” The Rocky Mountain Journal of Mathematics, vol. 26, no. 1, pp. 83-115, 1996. · Zbl 0856.53049 · doi:10.1216/rmjm/1181072105
[6] F. Etayo, R. Santamaría, and U. R. Trías, “The geometry of a bi-Lagrangian manifold,” Differential Geometry and its Applications, vol. 24, no. 1, pp. 33-59, 2006. · Zbl 1101.53047 · doi:10.1016/j.difgeo.2005.07.002
[7] D. V. Alekseevsky, C. Medori, and A. Tomassini, “Homogeneous para-Kähler Einstein manifolds,” Russian Mathematical Surveys, vol. 64, pp. 1-43, 2009. · Zbl 1179.53050 · doi:10.1070/RM2009v064n01ABEH004591
[8] W. Scherer, “Bi-Hamiltonian systems and Maslov indices,” Journal of Mathematical Physics, vol. 33, no. 11, pp. 3746-3756, 1992. · Zbl 0764.58012 · doi:10.1063/1.529872
[9] S. Erdem, “Some para-Hermitian related complex structures and non-existence of semi-Riemannian metric on some spheres,” Serdica Mathematical Journal, vol. 25, no. 1, pp. 83-90, 1999. · Zbl 0934.53041
[10] P. Libermann, “Sur le problème d’équivalence de certaines structures infinitésimales,” Annali di Matematica Pura ed Applicata, vol. 36, pp. 27-120, 1954. · Zbl 0056.15401 · doi:10.1007/BF02412833
[11] B.-Y. Chen, Pseudo-Riemannian Geometry, \delta -Invariants and Applications, World Scientific, 2011. · Zbl 1245.53001
[12] M. J. Gotay, “A class of nonpolarizable symplectic manifolds,” Monatshefte für Mathematik, vol. 103, no. 1, pp. 27-30, 1987. · Zbl 0608.53032 · doi:10.1007/BF01302708
[13] S. Ivanov, I. Minchev, and S. Zamkovoy, “Twistor and reflector spaces of almost para-quaternionic manifolds,” in Handbook of Pseudo-Riemannian Geometry and Supersymmetry, vol. 16, pp. 477-496, 2010. · Zbl 1248.53026 · doi:10.4171/079-1/14
[14] P. M. Gadea, “Sur l’existence de structures presque-tangentes,” Tensor New Series, vol. 34, no. 1, pp. 30-34, 1980. · Zbl 0438.53034
[15] D. Borthwick and A. Uribe, “Almost complex structures and geometric quantization,” Mathematical Research Letters, vol. 3, no. 6, pp. 845-861, 1996. · Zbl 0872.58030 · doi:10.4310/MRL.1996.v3.n6.a12
[16] T. Foth and A. Uribe, “The manifold of compatible almost complex structures and geometric quantization,” Communications in Mathematical Physics, vol. 274, no. 2, pp. 357-379, 2007. · Zbl 1122.53051 · doi:10.1007/s00220-007-0280-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.